• Title/Summary/Keyword: ULSD (Ultra Low Sulfur Diesel)

Search Result 23, Processing Time 0.02 seconds

The Effect of Biodiesel Oxidation Deterioration on Emission (바이오디젤의 산화가 배출가스에 미치는 영향)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.2-220.2
    • /
    • 2011
  • Biodiesel and biodiesel blend fuel are receiving increasing attention as alternative fuels for diesel engines without substantial modifications. Biodiesel fuels and blending have been widely studied and applied in diesel engine because of biodiesel's lower sulfur, lower aromatic hydrocarbon and higher oxygen content. Biodiesels have the potential to be oxidized in different condition. It has reported that oxidation deterioration of biodiesel is different in the condition of storage and oxidation causes chemical property change of methyl esters. Sunlight intensity, temperature, material of container and contact surface with oxygen are key dominant factors accelerating oxidation deterioration. In this study, we chose temperature among key oxidation conditions and metal container filled with biodiesel was heated at about $110^{\circ}C$ for 10 days in order to accelerate oxidation deterioration. To better understand the effect of biodiesel blends on emission, steady state tests were conducted on a heavy duty diesel engine. The engine was fueled with Ultra Low Sulphur Diesel(ULSD), a blend of 10% and 20%(BD10, BD20) on volumetric basis, equipped with a common rail direct injection system and turbocharger, lives up to the requirements of EURO 3. The experimental results show that the blend fuel of normal biodiesel with BD10 and BD20 increased NOx. The result of PM was similar to diesel fuel on BD10, but the result of PM on BD20 was increased about 63% more than its of diesel. The blend fuel of Oxidation biodiesel with BD10 and BD20 increased NOx as the results of normal biodiesel. But PM was all increased on BD10 and BD20. Especially THC was extremely increased when test fuel contains biodiesel about 140% more than its of diesel. Through this study, we knew that oxidation deterioration of biodiesel affects emission of diesel engine.

  • PDF

Characterization of Particulate Emissions from Biodiesel using High Resolution Time of Flight Aerosol Mass Spectrometer

  • Choi, Yongjoo;Choi, Jinsoo;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.78-85
    • /
    • 2015
  • In the past several decades, biofuels have emerged as candidates to help mitigate the issues of global warming, fossil fuel depletion and, in some cases, atmospheric pollution. To date, the only biofuels that have achieved any significant penetration in the global transportation sector are ethanol and biodiesel. The global consumption of biodiesel was rapidly increased from 2005. The goal of this study was to examine the chemical composition on particulate pollutant emissions from a diesel engine operating on several different biodiesels. Tests were performed on non-road diesel engine. Experiments were performed on 5 different fuel blends at 2 different engine loading conditions (50% and 75%). 5 different fuel blends were ultra-low sulfur diesel (ULSD, 100%), soy biodiesel (Blend 20% and Blend 100%) and canola biodiesel (Blend 20% and Blend 100%). The chemical properties of particulate pollutants were characterized using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Organic matter and nitrate were generally the most abundant aerosol components and exhibited maximum concentration of $1207{\mu}g/m^3$ and $30{\mu}g/m^3$, respectively. On average, the oxidized fragment families ($C_xH_yO_1{^+}$, and $C_xH_yO_z{^+}$) account for ~13% of the three family sum, while ~87% comes from the $C_xH_y{^+}$ family. The two peaks of $C_2H_3O_2$ (m/z 59.01) and $C_3H_7O$ (m/z 59.04) located at approximately m/z 59 could be used to identify atmospheric particulate matter directly to biodiesel exhaust, as distinguished from that created by petroleum diesel in the AMS data.

Synthesis of Poly(styrene-co-alkyl methacylate)s for Pour Point Depressants of Diesel containing Biodiesel (바이오디젤을 함유한 경유용 저온유동성 향상제의 합성: 폴리(스티렌-co-알킬 메타크릴레이트))

  • Yang, Young-Do;Kim, Young-Wun;Chung, Keun-Wo;Hwang, Do-Huak;Hong, Min-Hyeuk
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.497-503
    • /
    • 2008
  • A variety of techniques has been employed in order to reduce problems caused by the crystallization of paraffin and saturated fatty acid esters in diesel fuel containing biodiesels. Methacrylate copolymers are known as additives which reduce the pour point and cold filtering plugging point (CFPP) of diesel fuels. This paper describes the synthesis, characterization and low temperature properties, having as an initial step the synthesis of the alkyl methacrylate monomers by esterification of methacrylic acid with C12, C18, and C22 fatty alcohols. The copolymerization of these monomers with styrene was then performed, with molar ratios of 30:70, 50:50 and 70:30 for styrene:alkyl methacrylate. All copolymers were characterized by $^1H-NMR$, FT-IR, and gel permeation chromatography (GPC). The poly(styrene-co-alkyl methacrylate)s (PStmSMAn) leads to a large reduction in the pour point and CFPP of poly(styrene-co-alkyl methacrylate) in ultra low sulfur diesel (ULSD) and BD5 with treated 100~5000 ppm of poly(styrene-co-alkyl methacrylate). BD5 fuel containing 5000 ppm of the copolymer (PSt82SMA18) showed a $25^{\circ}C$ and $9^{\circ}C$ reduction in their pour points and CFPP, respectively.