• Title/Summary/Keyword: ULF power

Search Result 9, Processing Time 0.019 seconds

A correlation study of substorm injections and ULF power with relativistic electron events

  • Jeong-A Hwang;Gyeong-Uk Min;Ji-Na Lee;Dae-Yeong Lee
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.88-88
    • /
    • 2004
  • We demonstrate that the flux levels of post-storm relativistic electrons are well correlated with the amount of electrons of the energy about 100 keV injected during substorms, while the power of ULF is more or less related to the spectral hardening of these seed electrons. Hence, the existence of ULF alone during the storm time does not necessarily cause flux increase of relativistic electrons as storms do not always generate sufficient amount of seed electrons of this energy range. (omitted)

  • PDF

A CASE STUDY TO DETERMINE THE RELATIONSHIP OF RELATIVISTIC ELECTRON EVENTS TO SUBSTORM INJECTIONS AND ULF POWERS

  • Hwang Junga;Min Kyoung Wook;Lee Ensang;Lee China;Lee Dae Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.380-383
    • /
    • 2004
  • We study the two storm events of 1997: one in May that was accompanied by a relativistic electron event (REE) and the other in September, with a more profound Dst decrease, but with no significant flux increase of relativistic electrons. We find that a larger amount of seed electrons was present in the May event compared to that of the September storm, whereas the ULF (ultra low frequency) power was more enhanced and the particle spectrum was harder in the September event. Hence, we demonstrate that a larger storm does not necessarily produce more seed electrons and that the amount of seed electrons is an important factor in an actual increase in REE flux levels, while ULF can harden the particle spectra without causing an apparent REE.

  • PDF

Statistical Comparison of ULF wave Power of Magnetic field between the upstream solar wind and the magnetosheath: THEMIS observations

  • Park, Mi-Young;Kim, Hee-Jeong;Lee, Dae-Young;Kim, Kyung-Chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.96.2-96.2
    • /
    • 2012
  • We statistically examined ULF Pc 3-5 wave power in the regions of undisturbed upstream solar wind, quasi-parallel shock (and foreshock), quasi-perpendicular shock, and the magnetosheath to understand how and to what extent the wave power changes as the solar wind propagates to the magnetosheath. For this study, we used the magnetic field data from the THEMIS spacecraft and Wind (as shifted to the bow shock nose) for May-November in 2008 and 2009. The statistical results show that, in the case of the Pc5 wave power, the sheath power is roughly proportional to the upstream power for both quasi-parallel (and foreshock) and quasi-perpendicular shock regions. Also we identified undisturbed upstream condition from WIND as being well away from foreshock region, and found that the sheath power can be larger for quasi-parallel shock region by a factor of 5-15 than for quasi-perpendicular shock region. In the cases of Pc 3 and Pc4 waves, we found the higher sheath power when associated with the foreshock than with the quasi-perpendicular shock region.

  • PDF

Polarization Analysis of Ultra Low Frequency (ULF) Geomagnetic Data for Monitoring Earthquake-precusory Phenomenon in Korea (지진 전조현상 모니터링을 위한 ULF 대역 지자기장의 분극 분석)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Young-Gyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Since the 1990's, a number of ULF geomagnetic disturbance associated with earthquake occurrences have actively been reported, and polarization analysis of geomagnetic fields becomes one of potential candidates to be capable of predicting short-term earthquake. This study develops the modified polarization analysis method based on the previous studies, and analyzes three-component geomagnetic fields obtained at Cheongyang geomagnetic observatory using the developed method. A daily polarization value (the ratio of spectral power of horizontal and vertical geomagnetic field) is calculated with a focus on the 0.01 Hz band, which is known to be the most sensitive to seismogenic ULF radiation. We analyze a total of 10 months of geomagnetic data obtained at Cheongyang observatory, and compare the polarization values with the Kp index and the earthquake occurred in the analysis period. The results show that there is little correlation between the temporal variations of polarization values and Kp index, but remarkable increases in polarization values are identified which are associated with two earthquakes. Comparison the polarization values obtained at Cheongyang and Kanoya observatory indicates that the increases of polarization values at Cheongyang might be due to not global geomagnetic induction but the locally occurred earthquakes. Furthermore, these features are clearly shown in normalized polarization values, which take account in the statistical characteristics of each geomagnetic field. On the basis of these results, polarization analysis can be used as promising tool for monitoring the earthquake-precursory phenomenon.

ULF electromagnetic variation associated with seismic wave (지진파에 의해 발생하는 ULF 전자기장 변동)

  • Lee Heuisoon;Lee Choon-Ki;Kwon Byung-Doo;Yang Jun-Mo;Oh Seokhoon;Song Yoonho;Lee Tae Jong;Uchida Toshihiro
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.197-202
    • /
    • 2005
  • The electromagnetic signals associated with the seismic activity in the south-east offshore of Kii peninsula, Japan, were clearly recorded at the MT sites in Jeju island, Korea. In this research, we have identified the co-seismic electromagnetic signals associated with the seismic activity and have analyzed the characteristics of significant electromagnetic variations. The analysis of phase velocity, power spectral density, MT impedance and polarization direction shows that the significant earthquake signals have the frequency band of about 0.05 to 0.5 Hz and that the sources of electromagnetic field are local effects of passing seismic waves. The simple approximation using electrokinetic effect successfully explains the co-seismic EM signals coincides with measured data but cannot explain the localities of electromagnetic variations.

  • PDF

Pi2 Pulsations During Extremely Quiet Geomagnetic Condition: Van Allen Probe Observations

  • Ghamry, Essam
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2017
  • A ultra low frequency (ULF) wave, Pi2, has been reported to occur during periods of extremely quiet magnetospheric and solar wind conditions. And no statistical study on the Pi2 has been performed during extremely quiet conditions, using satellite observations to the author's knowledge. Also Pi2 pulsations in the space fluxgate magnetometers near perigee failed to attract scientist's attention previously. In this paper, Pi2 pulsations detected by the Van Allen probe satellites (VAP-A & VAP-B) were investigated statistically. During the period from October 2012 to December 2014, ninety six Pi2 events were identified using VAP when Kp = 0 while using Kakioka (KAK, L = 1.23) as a reference ground station. Seventy five events had high coherence between VAP-Bz and H components at KAK station. As a result, it was found that 77 % of the events had power spectra between 5 and 12 mHz, which differs from the regular Pi2 band range of from 6.7 to 25 mHz. In addition, it was shown that it is possible to observe Pi2 pulsations from space fluxgate magnetometers near perigee. Twenty two clean Pi2 pulsations were found where L < 4 and four examples of Pi2 oscillations at different L shells are presented in this paper.