• Title/Summary/Keyword: UHPFC

Search Result 2, Processing Time 0.014 seconds

Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites

  • Mohammed, Thaer Jasim;Abu Bakar, B.H.;Bunnori, N. Muhamad
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.123-136
    • /
    • 2015
  • The proposed techniques to repair concrete members such as steel plates, fiber-reinforced polymers or concrete have important deficiencies in adherence and durability. The use of ultra high performance fiber concrete (UHPFC) can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen reinforced concrete beams under torsion is investigated. Seven specimens of concrete beams reinforced with longitudinal and transverse reinforcements. One of these beams consider as control specimen while the others was strengthened by UHPFC on four, three, and two sides. This study includes experimental results of all beams with different types of configurations and thickness of UHPFC. As well as, finite element analysis was conducted in tandem with experimental test. Results reveal the effectiveness of the proposed technique at cracking and ultimate torque for different beam strengthening configurations, torque - twist graphs and crack patterns. The UHPFC can generally be used as an effective external torsional reinforcement for RC beams. It was noted that the behavior of the beams strengthen with UHPFC are better than the control beams. This increase was proportional to the retrofitted beam sides. The use of UHPFC had effect in delaying the growth of crack formation. The finite element analysis is reasonably agreement with the experimental data.

Finite element analysis of longitudinal reinforcement beams with UHPFC under torsion

  • Mohammed, Thaer Jasim;Bakar, B.H. Abu;Bunnori, N. Muhamad;Ibraheem, Omer Farouk
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • The proposed techniques to strengthen concrete members such as steel plates, polymers or concrete have important deficiencies in adherence and durability. The use of UHPFC plates can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen RC beams under torsion is investigated. Four specimens of concrete beams reinforced with longitudinal bars only were tested under pure torsion. One of the beams was considered as the baseline specimen, while the others were strengthened by ultra-high-performance fiber concrete (UHPFC) on two, three, and four sides. Finite element analysis was conducted in tandem with experimental work. Results showed that UHPFC enhances the strength, ductility, and toughness of concrete beams under torsional load, and that finite element analysis is in good agreement with the experimental data.