• 제목/요약/키워드: UFLS

검색결과 5건 처리시간 0.019초

Centralized Adaptive Under Frequency Load Shedding Schemes for Smart Grid Using Synchronous Phase Measurement Unit

  • Yang, D.Y.;Cai, G.W.;Jiang, Y.T.;Liu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.446-452
    • /
    • 2013
  • Under frequency load shedding (UFLS) is an effective way to prevent system blackout after a serious disturbance occurs in a power system. A novel centralized adaptive under frequency load shedding (AUFLS) scheme using the synchronous phase measurement unit (PMU) is proposed in this paper. Two main stages are consisted of in the developed technique. In the first stage, the active power deficit is estimated by using the simplest expression of the generator swing equation and static load model since the frequency, voltages and their rate of change can be obtained by means of measurements in real-time from various devices such as phase measurement units. In the second stage, the UFLS schemes are adapted to the estimated magnitude based on the presented model. The effectiveness of the proposed AUFLS scheme is investigated simulating different disturbance in IEEE 10-generator 39-bus New England test system.

주파수 안정도 유지를 위한 부하차단 시뮬레이션-가스분리플랜트 사례 (LOAD SHEDDING SIMULATION FOR MAINTAINING FREQUENCY STABILITY-GAS SEPARATION PLANT CASE)

  • 김봉희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.72_73
    • /
    • 2009
  • The industrial power system has the radial plant distribution system and domestic generators to supply the essential loads. When the system is isolated from the utility tie line, the system frequency drops resulting in the trip of generators. The load shedding scheme shall be properly designed to secure the essential load. In this paper two kinds of load shedding schemes, those are, the Fast Act Load Shedding(FALS) and Under Frequency Load Shedding(UFLS) are simulated and compared taking an example of petrochemical gas separation plant.

  • PDF

TSAT을 이용한 우리나라 계통의 저주파수 부하차단 방식 검토 (A Study on Under-Frequency Load Shedding Scheme of Korea Electric Power System using TSAT)

  • 이강완;배주천;조범섭;오화진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.34-37
    • /
    • 2003
  • The frequency of power system will change when the load-generation equilibrium is disturbed. Insufficiency of generation from the imbalance between load and generation decreases the power system frequency. In case of the severe emergency, the under frequency load shedding scheme is applied for the power system defense plan. In this paper, we analyzed the dynamic characteristics of under frequency load shedding using new Transient Security Assessment Tool ; TSAT. We applied the actual UFLS scheme to these studies and considered the possible contingency.

  • PDF

발전기 가속에너지를 이용한 고장파급방지장치 운전조건 완화용 전기저장장치 적정용량 산정방안 (Required Capacity Assessment of Energy Storage System for Relieving Operation Condition of SPS Using Generator Acceleration Energy)

  • 송승헌;최우영;권한나;국경수
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Due to the highly concentrated power plants integrated through the limited transmission lines in Korea, a Special Protection System(SPS) has been applied to stabilize the power systems by instantly tripping the pre-determined generators in a large-scaled power plant when a fault occurs on the drawing transmission lines. Moreover, power outputs of those generators are constrained to avoid any activation of Under Frequency Load Shedding(UFLS) even after those generators are tripped by SPS action. For this, this paper proposes a method for calculating the required capacity of Energy Storage System(ESS) expected to relieve the operating constraints to generators using its fast response for controlling power system frequency. The proposed method uses the generator acceleration energy to derive the stable condition during the SPS action. In addition, its effectiveness is verified by the case studies adopting actual SPS operations in Korean power systems.