• Title/Summary/Keyword: UF-RO Process

Search Result 33, Processing Time 0.025 seconds

Wastewater Treatment Using Ultrafiltration (UF) and Reverse Osmosis (RO) Process (침지형 한외여과 막공법과 역삼투 공법을 이용한 하.폐수처리)

  • Choi, H.J.;Park, Y.J.;Lee, S.M.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.678-683
    • /
    • 2012
  • One of alternatives to solve the global water shortages is the reuse of wastewater. The aim of this study was to evaluate whether it can be reused for industrial water from wastewater in "A" City with ultrafiltration (UF) and reverse osmosis (RO) process. The results obtained in this study were that the inorganics such as Na, Mg, Cl, Ca, Mn, $PO_4$, $SO_4$, etc. were removed with high treatment efficiency (more than 97%), respectively. However, the removal of $NH_4$-N, TN, $NO_3$-N, BOD was found to be 35.71%, 85.21%, 87.05% and 56%, respectively. The removal efficiency of nutrients was relatively low compared to other metal ions. Despite low nutrients removal, the treated wastewater is recommended to reuse, because the nutrient contents in influent from the secondary wastewater treatment plant were small amount. In addition, all other metrics in the wastewater were found to be lower amount than wastewater reuse criteria. Therefore, the wastewater treated by UF-RO could be sufficient to reuse for industrial waster.

Reuse potential of spent RO membrane for NF and UF process

  • Ng, Zhi Chien;Chong, Chun Yew;Sunarya, Muhammad Hamdan;Lau, Woei Jye;Liang, Yong Yeow;Fong, See Yin;Ismail, Ahmad Fauzi
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.323-331
    • /
    • 2020
  • With the increasing demand on reverse osmosis (RO) membranes for water purification worldwide, the number of disposed membrane elements is expected to increase accordingly. Thus, recycling and reuse of end-of-life RO membranes should be a global environmental action. In this work, we aim to reuse the spent RO membrane for nanofiltration (NF) and ultrafiltration (UF) process by subjecting the spent membrane to solvent and oxidizing solution treatment, respectively. Our results showed that solvent-treated RO membrane could perform as good as commercial NF membrane by achieving similar separation efficiencies, but with reduced water permeability due to membrane surface fouling. By degrading the polyamide layer of RO membrane, the transformed membrane could achieve high water permeability (85.6 L/㎡.h.bar) and excellent rejection against macromolecules (at least 87.4%), suggesting its reuse potential as UF membrane. More importantly, our findings showed that in-situ transformation on the spent RO membrane using solvent and oxidizing solution could be safely conducted as the properties of the entire spiral wound element did not show significant changes upon prolonged exposure of these two solutions. Our findings are important to open up new possibilities for the discarded RO membranes for reuse in NF and UF process, prolonging the lifespan of spent membranes and promoting the sustainability of the membrane process.

Application in Ultrafiltration and Reverse Osmosis Module Set with Acrylic Wastewater Pretreated by Coagulation-Filtration-Neutralization Process (응집-여과-중화 공정에 의해 전처리된 아크릴 폐수의 한외여과와 역삼투 모듈 조합 공정에의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • After membrane fouling factors in acrylic wastewater were minimized by pretreatment process accompanied with coagulation-filtration-neutralization, it was utilized in UF/RO process. After composing of ultrafiltration and reverse osmosis module set according to types and kinds of membrane, the separation characteristics were examined with the variation temperature and pressure using pretreated acrylic wastewater by membrane module sets. It was found that permeate flux of UF module in module set 4 was about two${\sim}$three times larger than that of UF module in module set 1. Final quantity of permeate from the module set 2 and module set 3 combined with tubular module was shown very good result. It was shown that the removal efficiency of TDS, T-N and COD was very low and was not dependent on the variation of temperature and pressure in all UF modules. The removal efficiency of TDS, T-N and COD was very excellent in RO module. Final water quality of acrylic wastewater was satisfied with effluent allowances limit and membrane module sets were ascertained to reuse wastewater.

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic 폐수의 전처리 및 UF/RO공정의 적용)

  • 이광현
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.152-160
    • /
    • 2001
  • The pretreatment for COD removal of acrylic wastewater and separation characteristics of ultrafiltration hollow fiber type module and reverse osmosis spiral wound type module with the variation of applied pressure and temperature were discussed. Thc optimum washing time of membranes was decided with long team operation and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 14 hrs and that of reverse osmosis membrane was indicated similarly. CaO find sand filter for the first step, neutralization process with treated acrylic wastewater as the second step, UF/RO processes were used as final strep. It was shown treat COD and TDS were below allowable discharge value with the result.

  • PDF

Application in Membrane Hybrid System with Acrylic Wastewater Pretreated by $TiO_2$ ($TiO_2$로 전처리한 아크릴 폐수의 Membrane Hybrid System에의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek;Lee, Gang-Choon
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.183-188
    • /
    • 2009
  • After membrane fouling factors in acrylic wastewater were minimized by pretreatment process accompanied with $TiO_2$, it was utilized in MF/UF/RO process. After composing of ultrafiltration/reverse osmosis or microfiltration/reverseosmosiss module set according to types and kinds of membrane, the separation characteristics were examined with the variation temperature and pressure using pretreated acrylic wastewater by membrane module sets. The permeate of ultrafiltration or microfiltration module was sent to reverse osmosis module. It was found that final permeate flux of reverse osmosis module in module set 2 (MWCO 200,000 UF+RO) was excellent. It was shown that the removal efficiency of TDS, T-N and COD was very low and was not dependent on the variation of temperature and pressure in UF and MF modules. From the above result, the removal efficiency of TDS, T-N and COD was very excellent in RO module. The removal efficiency of turbidity in UF and MF module was very high (> 99% removal efficiency). Final water quality of acrylic wastewater treated by the membrane module set was satisfied with effluent allowances limit and membrane module sets were ascertained to reuse wastewater.

The efficiency variation of UF(tubular)/RO(spiral wound) process using acrylic wastewater treated by different pretreatment processes (아크릴 폐수의 전처리공정에 따른 UF(tubular)/RO(spiral wound) 공정의 성능변화)

  • Lee, Kwang-Hyun;Han, Sung-Bum;Choi, Dae-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.387-394
    • /
    • 2002
  • The efficiency variation of UF(tubular)/RO(spiral wound) process using acrylic wastewater treated by photo-catalyst pretreatment and coagulant-filter-neutralization pretreatment processes were discussed wit the variation of appled pressure and temperature. Ultrafiltration tubular module using acrylic wastewater treated by photo-catalyst pretreatment and coagulant-filter-neutralization pretreatment processes was shown that COD and T-N were not highly affected with the variation of appled pressure and temperature. It was shown that removal efficiency of COD and T-N was low. Removal efficiency of TDS and turbidity with ultrafiltration tubular module was better with the acrylic wastewater by photo-catalyst pretreatment than acrylic wastewater by coagulant-filter-neutralization pretreatment. T-N and TDS were shown high removal efficiency in reverse osmosis membrane process.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

Color Removal of the Wastewater containing the Pigml:mts using Wastewater Treatment Technologies (안료폐수의 탈색연구)

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.429-439
    • /
    • 2000
  • Various wastewater treatment technologies were applied for decolorization and disposal of the wastewater containing the pigments, which consist of Lake Red C(Barium) or/and Lithol Rubine(Calcium) pigments. In an application of ozonation $COD_{Mn}$ was generally decreased with an increase of amounts of ozone applied, however, the decolorization effect was not that good except for Lithol Rubine series. In an application of Fenton oxidation and electrochemical process, a good $COD_{Mn}$ removal effect for all the pigment wastewater and a slight decolorization effect for a part of Lithol Rubine series were observed. In an application of ultra filtration(UF) and reverse osmosis(RO), an excellent $COD_{Mn}$ removal and decolorization(almost 100%) effects of all the pigment wastewater were observed. Thus the water treated by the UF and RO could be reusable and thus save operating costs of the pigment manufacturing plants.

  • PDF

A study on characteristics of filters for domestic household water purifier (국내 가정용 정수기 필터의 특성 분석에 관한 연구)

  • Cho, Jae-Ik;Kim, Gil-Tae;Ahn, Young-Chull
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.541-547
    • /
    • 2013
  • It is important to establish water treatment technologies for drinking water because Korea belongs to water-stressed country. Leachate from recent incident of foot-and-mouth disease has become an opportunity to be aware of the need to manage water quality. Water purifiers are adopted to four or five steps of filtration process. Each steps are composed of a sediment filter, a pre-carbon filter, an UF or a RO membrane filter and a post-carbon filter. And additionally a ceramic filter can be used as a final stage. In this study, operational conditions in each steps are examined and characteristics of each filters are investigated. SEM analysis is used for filter surface and shape investigation using 6 commercial samples. Pore sizes of the sediment filter, the UF membrane filter, and the RO membrane filter are 30~47 ${\mu}m$, 0.005~0.5 ${\mu}m$, and 0.025~0.25 ${\mu}m$, respectively. Specific surface areas of activated carbons are ranged from 622 to 1,308 $m^2/g$.

Advanced Treatment for Reuse of Oil Refinery Process Wastewater using UF/RO Processes (UF/RO 공정을 이용한 정유공장 방류수의 재활용을 위한 고도처리)

  • 이광현
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.220-229
    • /
    • 2000
  • Deionized water and wastewater flux were discussed using module set 1-7 composed of ultrafiltration hollow fiber type modules and reverse osmosis spiral wound type modules. The separation characteristics of ultrafiltration and reverse osmosis membranes were discussed with the variation of applied pressure and temperature. Turbidity and SS were removed effectively from ultrafiltration mem¬brane, and removal efficiency of COD, T-N, and TDS using reverse osmosis membrane was very efficient. Permeate flux increased linearly with the increase of applied pressures and temperature. It was shown that ultrafiltration and reverse osmosis membranes were suitable Lo the advanced treatment and reuse of oil refinery process effluent.

  • PDF