• Title/Summary/Keyword: UF membrane

Search Result 259, Processing Time 0.029 seconds

Functional Properties of Sesame Protein Concentrates Produced by Ultrafiltration (한외여과에 의해 제조된 참깨박 농축단백질의 기능적 특성)

  • 전정례;박정룡
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.5
    • /
    • pp.394-403
    • /
    • 2000
  • The functional properties of sesame protein concentrate(SPC) using different size of ultrafiltration(UF) membranes were examined and compared with those of conventional acid-precipitated sesame protein concentrate. The protein contents of SPC by UF with molecular size of 10K, 30K and look dalton membranes were 84.2%, 82.7%, and 76.4%, respectively, and that of acid-precipitated SPC was 88.7%. The nitrogen solubility of SPC by UF was higher than that of conventional SPC at various pH levels. Especially, it showed three-fold increase at near isoelectric point. However, water absorption capacity and fat absorption capacity of SPC by UF were decreased. For emulsion and foam properties, there were no significant differences between SPC by acid precipitation and SPC by UF method. At various pH levels, SPC by membrane with pore size of 30K dalton showed the highest emulsion properties. The SPC by UF had slightly higher viscosity than defatted sesame flour and SPC by acid precipitation.

  • PDF

A SURVEY OF THE DEVELOPMENT OF MEMBRANE SCIENCE AND TECHNOLOGY IN CHINA

  • Congjie, Gao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.12-12
    • /
    • 2004
  • A brief introduction was given in this paper for the research and development on membrane science and technology in China. Ion exchange membranes and electrodialysis, MF, UF, NF and RO membranes, gas separation (GS) membranes, pervaporation (PV), membranes, inorganic membranes (IM) and membrane reactors (MR) were involved.(omitted)

  • PDF

Recovery of Caustic Soda in Textile Mercerization by Combined Membrane Filtration (복합 막분리 공정에 의한 섬유가공 공정에서의 가성소다 회수)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Cho, Jin-Ku;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1273-1280
    • /
    • 2008
  • This study sought to establish the optimum operating condition for the recovery of caustic (NaOH) solution from mercerization in textile process. As main factors, the silt density index (SDI) evaluation of ceramic membrane for the application of nanofiltration/reverse osmosis (NF/RO) membrane, the recovery yield measurement of caustic solution for the application of polymeric membrane, the optimum condition of chemical cleaning for the membrane regeneration, the optimum removal condition of total organic carbon (TOC), turbidity, color, and the permeate flux of ceramic membrane/polymeric membrane combined process were investigated. As results, ceramic ultrafiltration (UF) in the first step and nanofiltration (NF) in the second step were found to be suitable for the removal of total suspended solid (TSS), residual organics, turbidity including color, and the recovery of caustic solution from caustic wastewater stream in mercerization process. When only the ceramic UF membrane was used, the rejection efficiency of both of TSS and turbidity was more than 99.0%, and the color and TOC were rejected about 74.7% and 49.2%, respectively. Meanwhile, the combined membrane precess of UF and NF membranes showed even more efficient removal abilities and thus more than 99.9% of TSS and turbidity, 87.7% of color, and 78.2% of TOC were removed. In particular, 91.3% of NaOH was successfully recovered with 83.7% of total volume in the combined membrane process. With this regard, a clean caustic solution was obtained in a high purity, which can be reused for mercerization process, expecting to offer economical benefits.

Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration

  • Kertesz, Szabolcs
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.73-86
    • /
    • 2014
  • Membrane fouling is a major challenge limiting the use of membrane applications. In this study high induced shear rates were utilized at the membrane surface in order to reduce the organic and inorganic scaling by using the torsional vibration of flat sheet membranes. The performances of a vibratory shear-enhanced processing (VSEP) system for the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membrane filtration of industrial dairy wastewater were investigated. The vibration and non-vibration methods were compared with the same membrane and operational parameters during the purification of real dairy industrial process wastewater. In the initial experiments, short-term tests were carried out in which the effects of vibration amplitude, recirculation flow rate and transmembrane pressure were measured and compared. The permeate flux, turbidity, conductivity and chemical oxygen demand (COD) reduction of dairy wastewater were investigated by using UF, NF and RO membranes with vibration and non-vibration methods. In the subsequent experiments, concentration tests were also carried out. Finally, scanning electron microscopy (SEM) revealed that the vibration method gave a better performance, which can be attributed to the higher membrane shear rate, which reduces the concentration of solids at the membrane, and the transmission.

Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal

  • Basri, H.;Ismail, A.F.;Aziz, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.25-37
    • /
    • 2011
  • PES UF membranes containing silver were prepared to impart antibacterial properties for waste water treatment. Asymmetric membranes for antibacterial application were prepared from polyethersulfone (PES) and silver nitrate ($AgNO_3$) (PES/$AgNO_3$=15/2 by weight) solution in N-Methyl-2-pyrrolidone (NMP) via simple wet phase inversion technique. These membranes were characterized by polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) of different molecular weights (1000 ppm in water) at room temperature and on operating pressure of 5 bars. It was observed that the water flux of PES-$AgNO_3$ membrane is slightly lower than virgin PES but still increased linearly with the increment of pressure applied. The morphology of the resulting membranes was examined using Field-Emission Scanning Electron Microscope (FESEM) coupled with Energy Dispersive Spectroscopy (EDS). Elemental analysis using EDS proved that silver is successfully loaded on the membrane surfaces. Due to the success of loading silver on membrane surfaces, antibacterial activities were evaluated via agar diffusion method against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) culture. By incorporating 2 wt% of silver nitrate, PES-$AgNO_3$ showed significant inhibition ring on both E.coli and S.aureus. Filtration of E.coli solution (OD 0.31) showed satisfactory rejection data with ~100% inhibition growth after 24 hours incubation at $37^{\circ}C$. Resultant membranes also exhibit better tensile strength (compared to virgin PES) up to 71% may be due to the suggested interactions. The residual silver during fabrication was measured using ICP-MS and result showed that the residual silver content of PES-$AgNO_3$ membrane was only ~1% of the original silver added in the polymer solution. These studies have shown that PES-$AgNO_3$ UF membranes are potential in improving the filtration in water treatment.

Comparative performance evaluation of two UF pilot plants at the Alto da Boa Vista WTP (São Paulo, Brazil)

  • Oliveira, T.F.;Mierzwa, J.C.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 2011
  • Ultrafiltration is an emerging technology for drinking water treatment because it produces better water quality as compared with conventional treatment systems. More recently, the combination of UF technology with other processes in order to improve its performance has been observed. These associations aim to maximize the contaminants removal and reduce membrane fouling. The operational performance of contaminants removal and water production of two UF pilot plants was compared. The first plant (Guarapiranga) was fed with raw water and the second plant (ABV) with pre-treated water by the coagulation, flocculation and sedimentation processes at Alto da Boa Vista WTP (Sao Paulo, Brazil). Both units operated continuously for approximately 2,500 hours, from September/2009 to January/2010. The results showed that the ABV UF pilot plant was able to operate at higher specific fluxes (6.2 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$) than Guarapiranga (3.1 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$). However, the number of chemical cleanings conducted in both pilot units during the considered operation period was the same (4 chemical cleanings for each plant), which shows that the pre-treatment reduced the membrane fouling. The water quality at ABV for all the variables analyzed was better, but the feed water quality was also better due to pretreatment. The rejection values for the different contaminants were higher at Guarapiranga mainly because of a pollution load reduction after pre-treatment at ABV. Even with the better performance of the ABV UF pilot plant, it is necessary to take into consideration the complexity of the complete treatment system, and also the costs involved in the construction and operation of a full-scale treatment unit.

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic폐수의 전처리 및 UF/RO공저의 적용)

  • 이광현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.05a
    • /
    • pp.135-138
    • /
    • 2001
  • Acrylic wastewater flux was discussed using modules of ultrafiltration hollow fiber and reverse osmosis spiral wound. The optimum backflushing times of membranes were decided and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 12hrs. Separation processes with ultrafiltration and reverse osmosis membranes were not suitable to remove COD and TDS. The improvement of pretreatment processes was needed.

  • PDF

UF 및 MF 중공사막의 오염 및 세정특성

  • 이주형;이용택;김정학
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.166-168
    • /
    • 1998
  • 막분리공정에서 분리막 오염은 투과율 감소에 큰 영향을 받는데 그 이유는 주로 막재질의 변질 및 막 표면에서의 농도 분극 현상에 기인하고 분리막의 종류 및 분획분자량의 차이에 따라 막분리 능력이 달라질 수 있다. 본 연구에서는 상용화되어 있는 UF/MF 중공사막에 미치는 막오염 정도와 세정 특성을 알아보았다. 막오염 정도는 막의 Pore size, 소재, 막구조에 따라서 단백질 수용액을 처리하여 막의 오염이 어떻게 일어나는지를 알아보았고 막오염 정도를 검토하기 위하여 초기순수에 대한 흡착후 투과량을 DOF(Degree of fouling)로 정의하였다. 막의 세정특성은 0.1N-NaOH을 사용하여 화학적 세정효과를 확인하였고 초기 순수에 대한 세정후 회복정도를 DOC(Degree of Cleaning)로 정의하였다. 또한 UF막에서 분획분자량별 특성과 MF막에서 소재별/구조적 특성이 DOF와 DOC에 미치는 영향에 대해서 알아보았다.

  • PDF

Textile Wastewater Treatment by MF-UF Combined Membrane Filtration (MF-UF 분리막 복합공정에 의한 염색가공 폐수처리)

  • Yang, Jeongmok;Park, Chulhwan;Lee, Byunghwan;Kim, Sangyong
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • Combined membrane process of ceramic microfiltration (MF) and polymer ultrafiltration (UF) was optimized for the removal of color and total organic carbon (TOC) from textile wastewater. Membrane regeneration was performed for the efficient operation by backflushing and chemical cleaning. Flux of 10.3% increased by the pulse backflushing of 1 second every 2 minutes in ceramic microfiltration. Membrane regeneration of 97% was obtained by chemical cleaning with 0.1% sodium hydroxide in polymer ultrafiltration. The removal efficiency of TOC, color and SS (suspended solid) were 84.6%, 97.4% and 100%, respectively. The combined process was found to be suitable for the removal of color and residual organics from textile wastewater.

  • PDF

Application of PAC-Membrane System for Treating Groundwater Contaminated with Chlorinated Organic Compounds (유기염소화합물로 오염된 지하수를 처리하기 위한 PAC-막분리 공정의 적용)

  • Lim, Joong-Kun;Kang, Min-Su;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.892-899
    • /
    • 2005
  • Groundwater is naturally of excellent microbiological qualify and generally of adequate quality for drinking water use. However, recently, the impact of urbanization and intensification of agricultural production have led to serious deterioration in groundwater quality. The representative SOCs used in this study were trichloroethylene (TCE) and tetrachloroethylene (PCE). Powdered activated carbon (PAC) is widely used for SOCs removal. The overall goal of this study was to demonstrate the feasibility of using a hybrid use of PAC-UF and PAC-MF processes for treating groundwater contaminated with TCE and PCE. The results show that the flux decline rate was lower for the PAC-UF or PAC-MF process than for UF or MF only process. Therefore, applying PAC before UF or MF membrane filtration showed not only enhancing the removal of TCE and PCE, but also reducing membrane fouling.