• Title/Summary/Keyword: UCC(Unified Chassis Control)

Search Result 5, Processing Time 0.025 seconds

Unified Chassis Control to Prevent Vehicle Rollover (차량전복 방지를 위한 통합섀시제어)

  • Yoon, Jang-Yeol;Yi, Kyoung-Su;Cho, Wan-Ki;Kim, Dong-Shin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1132-1137
    • /
    • 2007
  • This paper describes a Unified Chassis Control (UCC) strategy to prevent vehicle rollover by integrating individual modular chassis control systems such as Electronic Stability Control (ESC) and Continuous Damping Control (CDC). The UCC threshold is determined from a rollover index computed by estimated roll angle, roll rate and measured lateral acceleration. A direct yaw moment control method is used to design the ESC based on a 2-D bicycle model. Similarly, the CDC is designed based on a 2-D roll model using a direct roll moment control method. The performance of the proposed UCC scheme is investigated and compared to that of modular chassis controllers through computer simulations using a validated vehicle simulator. It is shown that the proposed the UCC can lead to improvements in vehicle stability and efficient actuation of chassis control systems.

  • PDF

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

Worst-case Development and Evaluation for Vehicle Dynamics Controller in UCC HILS (차량자세제어 최악상황 개발 및 UCC HILS 시스템 기반 성능 평가)

  • Kim, Jin-Yong;Jung, Do-Hyun;Jeong, Chang-Hyun;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.30-36
    • /
    • 2011
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA Sine with dwell steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes useful worst case based upon the existing worst case scenarios mentioned above and worst case evaluation for vehicle dynamic controller in simulation basis and UCC HILS. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.

Unified Chassis Control with ESC and AFS under Lateral Tire Force Constraint on AFS (타이어 횡력 제한 조건 하에서 ESC와 AFS를 이용한 통합 섀시 제어)

  • Yim, Seongjin;Nam, Gi Hong;Lee, Ho Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.595-601
    • /
    • 2015
  • This paper presents an unified chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. When generating the control yaw moment, an optimization problem is formulated in order to determine the tire forces, generated by ESC and AFS. With Karush-Kuhn-Tucker optimality condition, the optimum tire forces can be algebraically calculated. On low friction road, the lateral force in front wheels is easily saturation. When saturated, AFS cannot generate the required control yaw moment. To cope with this problem, new constraint on the lateral tire force is added into the original optimization problem. To check the effectiveness of the propose method, simulation is performed on the vehicle simulation package, CarSim.

A Simulation Environment Development for Global Chassis Control System of Vehicles (통합 샤시제어 시스템 개발을 위한 시뮬레이션 환경 구축)

  • Hwang T.H.;Park K.;Heo S.J.;Lee M.S.;Lee K.H.;Kee S.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1095-1098
    • /
    • 2005
  • Most electronic chassis control systems until today have been designed with optimization on its own performance. However, According to the increase of the interest regarding a vehicle safety and development of information technique, the integration technique of current chassis systems is being emphasized. Each enterprise proposed it with name of GCC(Global Chassis Control) or UCC(Unified Chassis Control). This study realizes control algorithm of suspension and brake by using the vehicle model of low degree of freedom as the primary stage of realization of integrated chassis control system. The proposed algorithm build the simulation environment connected to the CarSim having full vehicle model of 27 degree of freedom for raising the thrust of results

  • PDF