• 제목/요약/키워드: UAVs(Unmanned Aerial Vehicles)

검색결과 231건 처리시간 0.035초

무인기 체계와 지상전투차량 간 전술정보 연동 검토 (An Analysis of the Tactical Information Exchange between Unmanned Air Vehicles and Ground Fighting Vehicles)

  • 최일호;임경미;백인철
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.794-802
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAVs) have been considered as valuable aerial reconnaissance systems and our army wants capability-enhanced UAVs installed in our territory, hoping that the UAVs will provide enemy information in detail. The enemy information acqcuired by UAVs would be shared by our army's legacy systems. In this article, we made a research on the interoperability between UAVs and Ground Fighting Vehicles (GFVs), laying emphasis on what kinds of tactical information could be exchanged by two different weapon systems. Also, it needs to be addressed that their upper-level commanding systems play a significant role in such operation.

소형 무인비행체에서의 충돌회피를 위한 비행경로 생성에 관한 연구 (A Study of Path-Finding Method of Small Unmanned Aerial Vehicles for Collision Avoidance)

  • 신새벽;김진배;김신덕;김정길
    • 한국위성정보통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.76-80
    • /
    • 2017
  • 소형 무인기(UAV: Unmanned Aerial Vehicle)가 급속히 대중화됨에 따라 최근의 UAV 시스템은 각각의 목적에 따라 다양한 분야에서 설계되고 활용되고 있다. 이는 UAV 조정과 관련하여 전자, 센서, 카메라, 소프트웨어 프로그램 등에 이르기까지 많은 새로운 기회를 열어 가고 있으며 저비용 및 혁신적 업무 수행 능력으로 UAV의 활용과 응용 영역의 확대는 새로운 기술 혁신을 주도하고 있다. 특히 소형 UAV는 저고도 상황에서 예측이 힘든 돌발 변화나 장애물 출현 발생 확률이 높은 환경에서 비행을 하여야 한다. 본 논문에서는 소형 UAV 시스템의 자율 비행 기술에 관한 최근의 연구를 소개하고 적대적인 환경에서 소형 UAV의 저비용 센서들을 활용하여 경로 생성과 충돌 회피를 통해 안전하게 목표물에 도착을 유도하는 시험적 방안을 제안 한다.

Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles

  • Kim, Yun-Geun;Chang, Woohyuk;Kim, Kwangmin;Oh, Taegeun
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.36-44
    • /
    • 2021
  • Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by external threats. We implemented the proposed software in real mission computer hardware and evaluated the performance of situational awareness toward dynamic radar threats in flight simulations.

A Feasibility Study of Highway Traffic Monitoring using Small Unmanned Aerial Vehicle

  • Ro, Kap-Seong;Oh, Jun-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.54-66
    • /
    • 2007
  • Traffic and emergency monitoring systems are essential constituents of Intelligent Transportation System (ITS) technologies, but the lack of traffic monitoring has become a primary weakness in providing prompt emergency services. Demonstrated in numerous military applications, unmanned aerial vehicles (UAVs) have great potentials as a part of ITS infrastructure for providing quick and real-time aerial video images of large surface area to the ground. Despite of obvious advantages of UAVs for traffic monitoring and many other civil applications, it is rare to encounter success stories of UAVs in civil application including transportation. The objective of this paper is to report the outcomes of research supported by the state agency in US to investigate the feasibility of integrating UAVs into urban highway traffic monitoring as a part of ITS infrastructure. These include current technical and regulatory issues, and possible suggestions for a future UAV system in civil applications.

무인항공기를 이용한 대기갈색연무의 기후효과 연구 (Using Unmanned Aerial Vehicles (UAVs) to Study on the Climate Impacts of the Atmospheric Brown Clouds)

  • 김상우;윤순창
    • 대기
    • /
    • 제20권4호
    • /
    • pp.519-530
    • /
    • 2010
  • In this paper we review current research on Atmospheric Brown Clouds (ABCs) with lightweight Unmanned Aerial Vehicles (UAVs) and miniaturized instruments. The UAV technology for in-situ measurements, including aerosol concentration, aerosol size distribution, aerosol absorption, cloud drop size distribution, solar radiation fluxes (visible and broadband), and spectral radiative fluxes, is a leading-edge technology for cost-effective atmospheric sounding, which can fill the gap between the ground measurement and satellite observation. The first experimental observation with UAVs in Korea, Cheju ABC Plume Monsoon Experiment (CAPMEX), conducted during summer 2008 revealed that the Beijing plumes exerted a strong positive influence on the net warming and fossil-fuel-dominated black-carbon plumes were approximately 100% more efficient warming agents than biomass-burning-dominated plumes. Long-term sustainable routine UAV measurements will eventually provide truly three-dimensional data of ABCs, which is necessary for the better understanding of their climate impacts and for the improvement of numerical models for air pollution, weather forecast and climate change.

모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계 (Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method)

  • 최현진;유창선;유혁;김성욱;안석민
    • 한국항공운항학회지
    • /
    • 제25권4호
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

휴머노이드 로봇을 이용한 무인항공기 개발 (Development of a UAV Using a Humanoid Robot)

  • 송한준;이다솔;심현철
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1112-1117
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) are a popular research topic because of a great ripple effect in the future. However, current UAV technologies cannot be applied to manual aerial vehicles without any modification. As an alternative to current UAV technology, humanoid robots are adopted as pilots. If a humanoid robot controls an aerial vehicle autonomously, not only could manual aerial vehicles be utilized as UAVs, but the humanoid robot would also be put into an environment created for humans and conduct some missions suitable for humans. Humanoid robots are also able to handle tools and equipment designed for humans. In order to prove that a humanoid robot can pilot an airplane, an experiment is performed and the results of this experiment are shown in this paper.

비행 시뮬레이션을 이용한 소형 무인항공기의 최소 분리 거리 산출 (Minimum Separation Distance Calculation for Small Unmanned Aerial Vehicles using Flight Simulation)

  • 한 준 영
    • 한국항행학회논문지
    • /
    • 제28권1호
    • /
    • pp.15-20
    • /
    • 2024
  • 소형 무인항공기의 활용 분야가 군사용 및 민수용으로 확장됨에 따라 운용 안전성 및 공역의 경제 효율적 이용을 위한 연구의 필요성이 증가하였다. 본 연구에서는 저고도에서 비행하는 소형 무인항공기의 안전 운용을 위한 최소 분리 거리 산출을 수행하였다. 최소 분리 거리 산출에는 소형 무인항공기의 총 시스템 오차 분석이 필요하므로 민감도 분석을 통해 비행 기술 오차 요인을 선별하였다. 소형 무인항공기의 비행 데이터는 실제 소형 무인항공기의 비행 제어기와 비행 시뮬레이션 프로그램을 연동하여 획득하였다. 이를 기반으로 소형 무인항공기의 운용 시나리오를 설정하고 각 시나리오의 최소 분리 거리를 산출하였다. 이를 통해 실제 무인 소형 무인항공기의 안전 운용에 필요한 최소 분리 거리 산출치의 활용 방법을 제시하였다.

무인비행장치용 측량 및 관측용 탑재 카메라의 최적화 조건 연구 (A Study on the Optimization Conditions for the Mounted Cameras on the Unmanned Aerial Vehicles(UAV) for Photogrammetry and Observations)

  • 이희우;손호웅;김태훈
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1063-1071
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs, drones) are becoming increasingly useful in a variety of fields. Advances in UAV and camera technology have made it possible to equip them with ultra-high resolution sensors and capture images at low altitudes, which has improved the reliability and classification accuracy of object identification on the ground. The distinctive contribution of this study is the derivation of sensor-specific performance metrics (GRD/GSD), which shows that as the GSD increases with altitude, the GRD value also increases. In this study, we identified the characteristics of various onboard sensors and analysed the image quality (discrimination resolution) of aerial photography results using UAVs, and calculated the shooting conditions to obtain the discrimination resolution required for reading ground objects.

통합 해석 및 설계 최적화 기술을 이용한 무인기 성능 향상 연구 (UAV Performance Improvement Using Integrated Analysis and Design Optimization Technology)

  • 김지민;누엔 반;서정일;티안 막심;이재우;김상호
    • 한국항공운항학회지
    • /
    • 제21권1호
    • /
    • pp.30-38
    • /
    • 2013
  • This paper describes the design optimization of Unmanned Aerial Vehicles(UAVs). An optimization framework has been developed and implemented for the conceptual design of UAVs. An integrated design analysis program was developed with several analysis modules such as propulsion, performance, mission, weight, and stability and control. A UAV configuration design optimization was performed by implementing the integrated analysis to enhance the endurance of UAVs. A SQP optimizer was utilized to build an optimization module for this program and sensitivity analysis was performed to determine the trends of shape variables for developing optimization objective. In conclusion, the results indicate that the resulting optimized UAVs configurations show performance improvements over the baseline design and reliable analysis results.