• 제목/요약/키워드: UAV Imagery

검색결과 81건 처리시간 0.019초

계층분류 기법을 이용한 위성영상 기반의 동계작물 구분도 작성 (Satellite Imagery based Winter Crop Classification Mapping using Hierarchica Classification)

  • 나상일;박찬원;소규호;박재문;이경도
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.677-687
    • /
    • 2017
  • 본 연구에서는 위성영상 기반의 동계작물 구분도 작성을 위한 계층분류 기법을 제안한다. 계층분류 기법은 입력 자료를 계층별로 정의하여 분류하는 방법으로 혼합 픽셀의 효과를 줄이고 분류 성능을 향상시킬 수 있다. 이를 위하여 전북 김제시의 동계작물을 대상으로 Landsat-8 위성영상을 사용하였다. 먼저, Landsat-8 위성영상에서 스마트 팜 맵을 이용하여 농경지를 분류하였다. 그리고 추출된 농경지를 대상으로 시계열 식생지수를 사용하여 동계작물 재배지를 추출한 후, 최종적으로 무인기 영상에서 추출한 훈련자료를 활용하여 밀, 보리, IRG, 청보리 및 혼파 재배지로 분류하였다. 그 결과, 계층분류 기법에 의한 동계작물 분류 정확도는 98.99%로 동계작물별 재배 필지를 효과적으로 분류할 수 있는 것으로 나타났다. 따라서 제안된 분류방법은 작물구분도 작성에 효과적으로 사용 가능할 것으로 기대된다.

초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석 (Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea)

  • 김민주;백원경;정회수;유주형
    • 대한원격탐사학회지
    • /
    • 제40권3호
    • /
    • pp.295-305
    • /
    • 2024
  • 본 연구는 초고해상도 무인항공기 자료를 활용하여 황도 갯벌의 미세 퇴적 구조를 분석하는 것을 목적으로 하였다. 갯벌은 육지와 바다 사이의 전이 지역으로서 조석 활동에 의해 끊임없이 변화하며, 퇴적 과정과 환경 조건을 이해하는 데 중요한 독특한 환경을 제공한다. 기존의 현장 관측 방법은 공간적 및 시간적 범위에 한계가 있고, 기존 위성 영상은 미세한 퇴적 구조를 연구하기에 충분한 해상도를 제공하지 못한다. 이러한 한계를 극복하기 위해, 본 연구에서는 충청남도 황도 갯벌의 고해상도 이미지를 무인항공기를 이용해 촬영하였다. 황도 갯벌은 방조제 건설과 같은 해안 개발 프로젝트로 인해 퇴적 환경이 크게 변화한 지역이다. 2022년 5월 17일부터 18일까지 현장 관측을 통해 91개의 지점에서 퇴적물 샘플을 수집하였으며, 그중 25개의 주요 지점을 집중적으로 분석하였다. 약 0.9 mm의 공간 해상도를 가진 무인항공기 자료를 이용하여 미세 퇴적 구조의 파라미터(Parameter)를 식별하고 추출하였다. 건열에서는 다각형 장축의 길이를 추출하였고, 연흔에서는 파장과 연흔을 정량적으로 표현하는 대표적인 지표인 연흔 대칭 지수(Ripple Symmetry Index)를 추출하였다. 연구 결과, 니질 함량이 80% 이상인 지역에서는 평균 37.3 cm 간격의 건열이 형성되었으며, 사질 함량이 60% 이상인 지역에서는 평균 파장이 8 cm, 연흔 대칭 지수가 2.0인 연흔이 형성되었다. 본 연구는 초고해상도 무인항공기 자료를 활용하여 인간의 도보에 의한 현장 관측 없이도 갯벌의 미세 퇴적 구조를 효과적으로 분석할 수 있음을 입증하였다. 이는 환경 모니터링 및 해안 관리에서 중요한 도구로써 무인항공기 기술의 가능성을 강조하며, 무인항공기 자료가 퇴적 구조 연구에 유용하다는 것을 보여준다. 또한, 본 연구의 결과는 보다 정밀한 퇴적상 분류를 위한 기반 자료로 활용될 수 있을 것으로 기대된다.

UAV 자료와 객체기반영상분석을 활용한 대축척 갯벌 표층 퇴적상 분류도 작성 (Generation of Large-scale Map of Surface Sedimentary Facies in Intertidal Zone by Using UAV Data and Object-based Image Analysis (OBIA))

  • 김계림;유주형
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.277-292
    • /
    • 2020
  • 본 연구에서는 천수만 황도 갯벌 지역을 대상으로 UAV 자료와 객체기반영상분석 방법을 사용하여 대축척 갯벌 표층 퇴적상 분류도를 작성하고, 정확도 검증을 수행하여 정밀한 표층 퇴적상 분류의 가능성과 보다 정확한 분류 방법에 대해 제시하였다. 이를 위해 고해상도 UAV 자료에서 가시광 영역의 정사영상과 수치표고모델(DEM), 조류로 밀도 등 퇴적상 분류 시 영향을 주는 요인들을 추출하고, 통계학적 분석 방법을 통해 퇴적상에 따른 요인들의 주성분을 분석하였다. 주성분 요인을 바탕으로 퇴적상 분류 시 사용할 입력 자료를 (1) 가시광 영역의 스펙트럼, (2) 지형 고도와 조류로 밀도, (3) 가시광 영역의 스펙트럼과 지형 고도 및 조류로 밀도로 구분하였으며, 이를 기반으로 객체기반영상분석 분류방법에 입력 자료를 적용하여 대축척 갯벌 표층 퇴적상 분류도를 추출하였다. 입력 자료의 조건에 따라 표층 퇴적상 분류를 수행한 결과, folk 분류 기준을 따르는 6가지의 표층 퇴적상으로 분류하였고, 가시광 영역의 스펙트럼과 지형 고도, 조류로 밀도를 사용할 경우 전체 정확도가 63.04%, Kappa 지수가 0.54로 가장 효과적으로 표층 퇴적상을 분류하였다.

소나무재선충병 피해목 탐지를 위한 UAV기반의 식생지수 비교 연구 (A Study on the UAV-based Vegetable Index Comparison for Detection of Pine Wilt Disease Trees)

  • 정윤영;김상욱
    • 지적과 국토정보
    • /
    • 제50권1호
    • /
    • pp.201-214
    • /
    • 2020
  • 본 연구는 UAV 영상의 식생지수를 활용한 소나무재선충병 피해목 조기 탐지를 그 목적으로 하며, NDVI를 비롯한 대표적인 식생지수들을 선정하고 각각의 분류 정확도 비교분석을 통해 최적의 식생지수를 분석해보았다. 현장답사를 통하여 193개체의 소나무재선충병 피해목 위치데이터를 구축하고 동시에 다중분광 UAV 영상을 이용하여 4가지 식생지수 분석을 수행하였다. 무감독분류(K-Means)를 통하여 피해목을 분류하였고, 오차행렬(Confusion Matrix)를 이용하여 식생지수별 분류정확도를 비교·분석하였다. 연구의 결과를 요약하면 다음과 같다. 첫째 분류의 전체정확도는 NDVI (88.04%, Kappa계수 0.76) > GNDVI (86.01%, Kappa계수 0.72) > NDRE (77.35%, Kappa계수 0.55) > SAVI (76.84%, Kappa계수 0.54)순으로 분석되어 NDVI가 가장 높은 정확도를 보였으며, GNDVI가 거의 비슷한 수준의 분류정확도를 보였다. 둘째, NDVI 및 GNDVI 식생지수를 이용한 K-Means 무감독 분류방법으로 피해목의 판별이 어느 정도 가능한 것으로 판단된다. 특히 위 기법은 연산이 집약적이고 사용자의 개입이 적고 분석과정이 상대적으로 간단하여 피해목의 조기 탐지에 도움을 줄 수 있을 것으로 판단된다. 향후 시계열영상의 활용 또는 딥러닝기법의 추가 응용으로 분류정확도를 높일 수 있을 것으로 기대한다.

고정익 UAV를 이용한 고해상도 영상의 토지피복분류 (Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV)

  • 양승룡;이학술
    • 한국재난정보학회 논문집
    • /
    • 제14권4호
    • /
    • pp.501-509
    • /
    • 2018
  • 연구목적: UAV기반의 사진측량은 기존 항공촬영에 비해 비용이 절감될 뿐만 아니라 원하는 시간과 장소에 대한 고해상도의 데이터를 취득하기 용이하기 때문에, 공간정보 분야에서도 UAV를 활용한 연구가 진행되고 있다. 본 연구에서는 UAV 기반의 고해상도 영상을 활용하여 토지피복 분류를 수행하고자 하였다. 연구방법: 고해상도 영상의 획득을 위하여 RGB카메라를 사용하였으며, 추가적으로 식생지역을 정확하게 분류하기 위해서 다중분광 카메라를 사용하여 동일 지역을 추가 촬영하였다. 최종적으로 RGB 및 다중분광 카메라를 이용하여 생성된 정사영상, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix)을 이용하여 대표적인 감독분류기법인 RF(Random Forest)방법을 이용해 총 7개 클래스에 대해 토지피복분류를 수행하였다. 연구결과: 분류정확도 평가를 위해 오차행렬을 기반으로 한 정확도 평가를 실시하였으며, 정확도 평가 결과 RGB 영상만을 이용한 감독분류결과와 비교하여 제안 방법이 해당 지역의 클래스를 효과적으로 분류할 수 있음을 확인하였다. 결론: 본 연구에서 제안한 정사영상, 다중분광영상, NDVI, GLCM을 모두 추가한 경우 기존의 정사영상만을 이용하였을 때 보다 높은 정확도를 나타냈다. 추후 연구로는 추가적인 입력자료의 개발을 통해 분류 정확도를 향상시키고자 한다.

드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석 (Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery)

  • 장규진;김재영;김동욱;정용석;김학진
    • 한국작물학회지
    • /
    • 제67권4호
    • /
    • pp.274-284
    • /
    • 2022
  • 국내 환경에 적합한 케나프 육종을 위해선 비용, 정확도, 속도가 최적으로 설계된 정량적인 고속탐색법(high-throughput)에 기반한 표현형 분석법이 필요하다. 최근 UAV 기반의 원격탐사 기법의 발달로 노지에서 재배되는 작물의 생육인자들에 대한 대량 데이터를 저비용으로 신속하게 얻을 수 있으며 정확하게 분석하기 위한 연구가 활발하게 진행되고 있다. 본 연구에서는 국내에서 요구되는 케나프의 섬유와 가축 사료로서 육종을 위해 해당 목적과 부합한 케나프 높이를 주요 표현형 인자로 선정하여 UAV-RGB에 SfM 알고리즘 기반의 사진 측량 기술을 적용함으로 높이를 예측하고자 하였다. 기존 방법으로 예측한 작물 높이는 바람에 의한 작물의 흔들림으로 오차가 발생할 수 있으며 키가 2 m 이상 크게 자라 실측도 어려운 문제가 있다. 이러한 문제점을 해결하고자 바람에 흔들리지 않는 일정 높이를 가지는 고정 구조물을 설치하여 기준점을 이용한 모델식으로 기하 보정을 통해 높이 예측성능을 개선하였다. 그 결과 R2는 0.80으로 나타났으며, 보정 전(R2 = 0.80, slope = 0.87, offset = -2.51) 보다 높은 신뢰성(R2 = 0.80, slope = 0.94, offset = -1.62)을 확보하였다. 품종별로 생육단계에 따라 측정한 높이 지도를 통해 얻어진 케나프 키 정보는 품종 별로 유의미한 차이를 보임으로서 해당 방법으로 예측한 케나프 높이가 섬유와 가축 사료 목적의 육종 선발에 활용될 수 있을 것으로 판단하였다.

Detection of Individual Tree Species Using Object-Based Classification Method with Unmanned Aerial Vehicle (UAV) Imagery

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • 제35권3호
    • /
    • pp.181-188
    • /
    • 2019
  • This study was performed to construct tree species classification map according to three information types (spectral information, texture information, and spectral and texture information) by altitude (30 m, 60 m, 90 m) using the unmanned aerial vehicle images and the object-based classification method, and to evaluate the concordance rate through field survey data. The object-based, optimal weighted values by altitude were 176 for 30 m images, 111 for 60 m images, and 108 for 90 m images in the case of Scale while 0.4/0.6, 0.5/0.5, in the case of the shape/color and compactness/smoothness respectively regardless of the altitude. The overall accuracy according to the type of information by altitude, the information on spectral and texture information was about 88% in the case of 30 m and the spectral information was about 98% and about 86% in the case of 60 m and 90 m respectively showing the highest rates. The concordance rate with the field survey data per tree species was the highest with about 92% in the case of Pinus densiflora at 30 m, about 100% in the case of Prunus sargentii Rehder tree at 60 m, and about 89% in the case of Robinia pseudoacacia L. at 90 m.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • 제43권2호
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교 (Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met)

  • 김성현;박경훈;송봉근
    • 한국지리정보학회지
    • /
    • 제26권4호
    • /
    • pp.145-160
    • /
    • 2023
  • 본 연구는 무인항공기(Unmanned Aerial Vehicles, UAV) 기반 물리적 환경인 Normalized Difference Vegetation Index(NDVI), Sky View Factor(SVF)와 ENVI-met 모델링을 활용하여 시간대별 열적 환경을 비교 분석하는 것을 목적으로 수행하였다. 연구 결과 NDVI, SVF는 열적 환경 요소인 Upward short-wavelength(S↑), Downward short-wavelength(S↓), Upward long-wavelength(L↑), Downward long-wavelength(L↓), Land Surface Temperature (LST), Mean Radiant Temperature(Tmrt)와 유의수준 1% 이내에서 모두 상관관계를 보이는 것으로 도출되었다. 특히, NDVI는 S↑와 12시에 최대 -0.52**의 상관관계를 가지는 것으로 분석되었고, L↓와 모든 시간대에서 0.53** 이상의 상관성을 보였다. LST와는 -0.61**(13시)의 상관성을 보여 NDVI는 장파 복사에너지의 관련성이 높은 것으로 판단된다. SVF의 경우 SVF 범위에 따라 장파 복사에너지와의 관련성이 높은 것으로 도출되었다. 본 연구결과는 공간의 열적 쾌적성과 미기후를 평가하기 위한 통합 접근 방식을 제공할 수 있으며, 도시 디자인 및 경관 특성이 보행자의 열 쾌적성 미치는 영향 관계 규명 등에 활용될 수 있을 것으로 판단된다.

UAV 기반 TIR 영상의 융합 기법 정확도 평가 (Accuracy Assessment of Sharpening Algorithms of Thermal Infrared Image Based on UAV)

  • 박상욱;최석근;최재완;이승기
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.555-563
    • /
    • 2018
  • 열적외선 영상은 육안으로 식별 할 수 없는 물체를 감지할 수 있는 특성을 가지고 있으며, 접근 불가지역의 정보를 쉽게 얻을 수 있는 장점을 가지고 있다. 그러나 열적외선 영상은 상대적으로 낮은 공간 해상도를 지니는 한계점이 있다. 본 연구에서는 무인 항공기를 활용하여 취득한 영상에 대하여 위성영상에 적용되는 영상융합 알고리즘의 적용 가능성을 연구하였다. RGB 영상은 TIR (Thermal InfraRed) 영상보다 높은 공간 해상도를 가지고 있다. 본 연구에서는 상대적으로 낮은 공간 해상도를 갖는 TIR 영상에 영상융합 알고리즘을 적용하여 RGB 영상과 같은 공간 해상도를 가지며 온도정보를 가지는 융합영상을 생성하고자 한다. 실험결과, PC1 밴드와 RGB 밴드의 평균값을 이용하여 영상융합 알고리즘을 수행한 경우, 다른 밴드를 활용하여 연구를 수행한 경우보다 정량적 평가에 대해서 더 좋은 결과가 나타냈으며, ATWT (${\grave{A}}$ Trous Wavelet Transform) 기법에 의한 융합영상이 HPF (High-Pass Filter) 및 SFIM (Smoothing Filter-based Intensity Modulation) 기법에 의한 융합영상보다 더 뛰어난 분광해상도 및 공간 해상도를 나타냈다.