• Title/Summary/Keyword: UAV: unmanned aerial vehicle

Search Result 793, Processing Time 0.031 seconds

Real-time Stabilization Method for Video acquired by Unmanned Aerial Vehicle (무인 항공기 촬영 동영상을 위한 실시간 안정화 기법)

  • Cho, Hyun-Tae;Bae, Hyo-Chul;Kim, Min-Uk;Yoon, Kyoungro
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Video from unmanned aerial vehicle (UAV) is influenced by natural environments due to the light-weight UAV, specifically by winds. Thus UAV's shaking movements make the video shaking. Objective of this paper is making a stabilized video by removing shakiness of video acquired by UAV. Stabilizer estimates camera's motion from calculation of optical flow between two successive frames. Estimated camera's movements have intended movements as well as unintended movements of shaking. Unintended movements are eliminated by smoothing process. Experimental results showed that our proposed method performs almost as good as the other off-line based stabilizer. However estimation of camera's movements, i.e., calculation of optical flow, becomes a bottleneck to the real-time stabilization. To solve this problem, we make parallel stabilizer making average 30 frames per second of stabilized video. Our proposed method can be used for the video acquired by UAV and also for the shaking video from non-professional users. The proposed method can also be used in any other fields which require object tracking, or accurate image analysis/representation.

Development of Instructional Materials for Micro-UAV Design and Production Program using 3D Printers and Its Application (3D 프린팅을 이용한 소형 무인기 설계·제작 교육 프로그램을 위한 수업자료 개발과 적용)

  • Kim, Sitae;Kim, Minseong;Kong, Dongjae
    • Journal of Engineering Education Research
    • /
    • v.24 no.5
    • /
    • pp.46-52
    • /
    • 2021
  • This study introduces the development and application of instructional materials for a micro-UAV (unmanned aerial vehicle) design and manufacturing program in university education for freshman/sophomore students. The ADDIE methodology was applied to the development of educational materials, which consist of 15 lessons including the aircraft design theory, 3D CAD modeling, 3D printing production, and UAV flight control. The validity of the program was evaluated with 8 expert panels. A total of 82 participants from engineering and social science grouped the 16 teams for the creative UAV wing design and cooperative interactions. The results of overall program satisfaction survey was measured highly as the average 4.54 (out of 5), so that the students were content with the professional engineering knowledge, 3D digital tools, and the opportunity to design and manufacture airplanes on their own. In conclusion, it can be confirmed that the developed program is effective for UAV education for junior level college student.

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape (무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석)

  • Yun, Jae Hyun;Choi, Ha-Young;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.513-520
    • /
    • 2014
  • An unmanned aerial vehicle (UAV) should be designed to be as small and lightweight as possible to optimize the efficiency of changing the blade shape to enhance the aerodynamic performance, such as the thrust and power. In this study, a computational fluid dynamics (CFD) simulation of an unmanned multi-rotor aerial vehicle in hover mode was performed to explore the thrust performance in terms of the blade rotational speed and blade shape parameters (i.e., taper ratio and twist angle). The commercial ADINA-CFD program was used to generate the CFD data, and the results were compared with those obtained from blade element theory (BET). The results showed that changes in the blade shape clearly affect the aerodynamic thrust of a UAV rotor blade.

Applicability of unmanned aerial vehicle for chlorophyll-a map in river (하천녹조지도 작성을 위한 무인항공기 활용 가능성에 관한 연구)

  • Kim, Eunju;Nam, Sookhyun;Koo, Jae-Wuk;Lee, Saromi;Ahn, Changhyuk;Park, Jerhoh;Park, Jungil;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.197-204
    • /
    • 2017
  • This study was carried out to apply the UAV(Unmanned Aerial Vehicle) coupled with Multispectral sensor for the algae bloom monitoring in river. The study acquired remote sensing data using UAV on the midstream area of Gum River, one of four major rivers in South Korea. Normalized difference vegetation index (NDVI) is used for monitoring algae change. This study conducted water sampling and analysis in the field for correlating with NDVI values. Among the samples analyzed, the chlorophyll concentration exhibited strong and significant linear relationships with NDVI, and thus NDVI was chosen for algae bloom index to identify emergence aspect of phytoplankton in river. Aerial remote sensing technology can provide more accurate, flexible, cheaper, and faster monitoring methods of detecting and predicting eutrophication and therefore cyanobacteria bloom in water reservoirs compared to currently used technology. As a result, there was high level of correlation in chlorophyll-a and NDVI. It is expected that when this remote water quality and pollution monitoring technology is applied in the field, it would be able to improve capabilities to deal with the river water quality and pollution at the early stage.

Improvement of Ortho Image Quality by Unmanned Aerial Vehicle (UAV에 의한 정사영상의 품질 개선 방안)

  • Um, Dae-Yong;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.568-573
    • /
    • 2018
  • UAV(Unmanned Aerial Vehicle) is widely used in space information construction, agriculture, fisheries, weather observation, communication, and entertainment fields because they are cheaper and easier to operate than manned aircraft. In particular, UAV have attracted much attention due to the speed and cost of data acquisition in the field of spatial information construction. However, ortho image images produced using UAVs are distorted in buildings and forests. It is necessary to solve these problems in order to utilize the geospatial information field. In this study, fixed wing, rotary wing, vertical take off and landing type UAV were used to detect distortions of ortho image of UAV under various conditions, and various object areas such as construction site, urban area, and forest area were captured and analysed. Through the research, it was found that the redundancy of the unmanned aerial vehicle image is the biggest factor of the distortion phenomenon, and the higher the flight altitude, the less the distortion phenomenon. We also proposed a method to reduce distortion of orthoimage by lowering the resolution of original image using DTM (Digital Terrain Model) to improve distortion. Future high-quality unmanned aerial vehicles without distortions will contribute greatly to the application of UAV in the field of precision surveying.

Development and Verification Methodology for Small Civil Unmanned Aerial Vehicle System based on Open System Architecture (개방형 시스템 아키텍처 기반의 소형 민간 무인항공기 시스템 개발 및 검증 방법)

  • Jo, Hyun-Chul;Park, Keunyoung
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.32-43
    • /
    • 2020
  • The Unmanned Aerial Vehicle(UAV) system has been mainly used for military domains, but it also widely applied to used in the civilian domains. In civilian domains, low-cost and small-sized UAV systems are mainly applied in various industries. The software that operates UAV systems has a lot of common functions. However, even though there are many common functionalities of the software, changing the devices may cause a problem requiring software modification. These problems degrade interoperability, modularity and portability in UAV systems. In order to solve the problems, an Open System Architecture(OSA) has been proposed. In this paper, we propose a UAV system software architecture based on Future Airborne Capability Environment(FACE) standard. Our system can support UAV systems of various platforms in the civilian domains, which is supplied in small quantity batch production. And it has the advantages of software consolidation and portability. Finally, We describe the development and conformant methodology of the software based on the FACE standard using open development tools.

  • PDF

A Review of Routing Plan for Unmanned Aerial Vehicle : Focused on In-Country Researches (국내 무인항공기의 경로계획 연구)

  • Kim, Jinwoo;Kim, Jinwook;Chae, Junjae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.212-225
    • /
    • 2015
  • UAV (Unmanned Aerial Vehicle), the pilotless plane or drone, draws researchers' attention at these days for its extended use to various area. The research was initiated for military use of the UAV, but the area of applicable field is extended to surveillance, communication, and even delivery for commercial use. As increasing the interest in UAV, the needs of research for operating the flying object which is not directly visible when it conducts a certain mission to remote place is obviously grown as much as developing high performance pilotless plane is required. One of the project supported by government is related to the use of UAV for logistics fields and controlling UAV to deliver the certain items to isolated or not-easy-to-access place is one of the important issues. At the initial stage of the project, the previous researches for controlling UAV need to be organized to understand current state of art in local researches. Thus, this study is one of the steps to develop the unmanned system for using in military or commercial. Specifically, we focused on reviewing the approaches of controlling UAV from origination to destination in previous in-country researches because the delivery involves the routing planning and the efficient and effective routing plan is critical to success to delivery mission using UAV. This routing plan includes the method to avoid the obstacles and reach the final destination without a crash. This research also present the classification and categorization of the papers and it could guide the researchers, who conduct researches and explore in comparable fields, to catch the current address of the research.

Coordinated Millimeter Wave Beam Selection Using Fingerprint for Cellular-Connected Unmanned Aerial Vehicle

  • Moon, Sangmi;Kim, Hyeonsung;You, Young-Hwan;Kim, Cheol Hong;Hwang, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1929-1943
    • /
    • 2021
  • Millimeter wave (mmWave) communication based on the wide bandwidth of >28 GHz is one of the key technologies for cellular-connected unmanned aerial vehicles (UAVs). The selection of mmWave beams in such cellular-connected UAVs is challenging and critical, especially when downlink transmissions toward aerial user equipment (UE) suffer from poor signal-to-interference-plus-noise ratio (SINR) more often than their terrestrial counterparts. This study proposed a coordinated mmWave beam selection scheme using fingerprint for cellular-connected UAV. The scheme comprises fingerprint database configuration and coordinated beam selection. In the fingerprint database configuration, the best beam index from the serving cell and interference beam indexes from neighboring cells are stored. In the coordinated beam selection, the best and interference beams are determined using the fingerprint database information instead of performing an exhaustive search, and the coordinated beam transmission improves the SINR for aerial UEs. System-level simulations assess the UAV effect based on the third-generation partnership project-new radio mmWave and UAV channel models. Simulation results show that the proposed scheme can reduce the overhead of exhaustive search and improve the SINR and spectral efficiency.

Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map (3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.