• Title/Summary/Keyword: UAV(Unmanned Aerial Vehicles)

Search Result 295, Processing Time 0.022 seconds

Routing in UAV based Disruption Tolerant Networks (무인항공기 기반 지연 허용 네트워크에서의 라우팅)

  • Kim, Tea-Ho;Lim, Yu-Jin;Park, Joon-Sang
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.521-526
    • /
    • 2009
  • Disruption/Delay Tolerant Network(DTN) is a technology for interconnecting partitioned networks. These days, DTN, especially routing in DTN, draws significant attention from the networking community. In this paper, we investigate DTN routing strategies for highly partitioned ad hoc networks where Unmanned Aerial Vehicles (UAVs) perform store-carry-forward functionality for improved network connectivity. Also we investigate UAV trajectory control mechanisms via simulation studies.

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

Noise Prediction of Ducted Fan Unmanned Aerial Vehicles considering Strut Effect in Hover

  • Park, Minjun;Jang, Jisung;Lee, Duckjoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.144-153
    • /
    • 2017
  • In recent years, unmanned aerial vehicles (UAVs) have been developed and studied for various applications, including drone deliveries, broadcasting, scouting, crop dusting, and firefighting. To enable the wide use of UAVs, their exact aeroacoustic characteristics must be assessed. In this study, a noise prediction method for a ducted fan UAV with complicated geometry was developed. In general, calculation efficiency is increased by simulating a ducted fan UAV without the struts that fix the fuselage to the ducts. However, numerical predictions of noise and aerodynamics differ according to whether struts are present. In terms of aerodynamic performance, the total thrust with and without struts is similar owing to the tendency of the thrust of a blade to offset the drag of the struts. However, in aeroacoustic simulations, the strut effect should be considered in order to predict the UAV's noise because noise from the blades can be changed by the strut effect. Modelling of the strut effect revealed that the dominant tonal noises were closely correlated with the blade passage frequency of the experimental results. Based on the successful detection of noise sources from a ducted fan UAV system, using the proposed noise contribution contour, methods for noise reduction can be suggested by comparing numerical results with measured noise profiles.

Resource Allocation Algorithm for Multiple RIS-Assisted UAV Networks (다중 UAV-RIS 네트워크를 위한 자원 할당 알고리즘)

  • Heejae Park;Laihyuk Park
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2023
  • Unmanned Aerial Vehicles (UAVs) have gained significant attention in 5G and 6G wireless networks due to their high flexibility and low hardware costs. However, UAV communication is still challenged by blockage and energy consumption issues. Reconfigurable Intelligent Surfaces (RISs) have emerged as a promising solution to these challenges, enabling improved spectral efficiency and reduced energy consumption by transmitting signals to users who cannot receive signals because of the obstacles. Many previous studies have focused on minimizing power consumption and data transmission delay through phase shift and power optimization. This paper proposes an algorithm that maximizes the sum rate by including bandwidth optimization. Simulation results demonstrate the effectiveness of the proposed algorithm.

  • PDF

Aeromagnetic Exploration using Unmanned Aerial Vehicles: Current and Future Trends (무인항공기를 활용한 항공자력탐사: 연구 동향 및 향후 과제)

  • Kim, Bona
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.178-191
    • /
    • 2020
  • Unmanned aerial vehicle (UAV) technologies have grown rapidly over the past decade. Simultaneously, there is an increasing need for efficient high-resolution exploration techniques in complex environments. As a result, exploration technology using UAVs is gaining attention as an efficient method to complement and replace existing exploration technologies. In particular, magnetic exploration technology with UAVs is rapidly gaining ground in the field of exploration and is expected to be actively used in this field in the future. To properly use such technology in domestic exploration, it is necessary to review the latest research trends. Accordingly, this paper introduces the current state of UAV-based magnetic exploration technology studies and, based on this, discusses future research directions.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

Design and Verification of Electrical System for Unmanned Aerial Vehicle through Electrical Load Power Analysis (전원부하분석을 통한 무인항공기 전기시스템 설계 및 검증)

  • Woo, Heechae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.675-683
    • /
    • 2018
  • In this paper, we have proposed a design and verification methods of electrical system and power loads for unmaned aeriel vehicles(UAVs) through electrical load analysis. In order to meet a UAV system requirement and electrical system specifications, we have designed an electrical power system for efficient power supply and distribution and have theoretically analyzed the power loads according to the power consumption and power bus design of UAV. Using electrical system rig, the designed electrical power system has been experimentally verified. Also, we have performed several flight tests to verify the UAV electrical system and power loads. It is concluded that the proposed design and verification method of electrical system for UAV system.

Advancements in Unmanned Aerial Vehicle Classification, Tracking, and Detection Algorithms

  • Ahmed Abdulhakim Al-Absi
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.32-39
    • /
    • 2023
  • This paper provides a comprehensive overview of UAV classification, tracking, and detection, offering researchers a clear understanding of these fundamental concepts. It elucidates how classification categorizes UAVs based on attributes, how tracking monitors real-time positions, and how detection identifies UAV presence. The interconnectedness of these aspects is highlighted, with detection enhancing tracking and classification aiding in anomaly identification. Moreover, the paper emphasizes the relevance of simulations in the context of drones and UAVs, underscoring their pivotal role in training, testing, and research. By succinctly presenting these core concepts and their practical implications, the paper equips researchers with a solid foundation to comprehend and explore the complexities of UAV operations and the role of simulations in advancing this dynamic field.

Global Unmanned Aerial Vehicle Utilization Research Trends

  • Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun;Kim, Dong-Pil
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • The rapid development of technologies in unmanned aerial vehicles (UAVs) has led to their use in various areas. UAVs are mainly used for commercial purposes, but their utilization is increasingly important in other areas because their operation cost is less than satellites and aerial imaging. The utilization of UAVs in the environment/ecology area is relatively new. Therefore, identifying the trends of UAV-related spatial information is significant in basic research for UAV utilization. This study quantitatively identified domestic and international research trends related to UAV utilization and analyzed research areas. An attempt was also made to identify upcoming UAV-related topics in the environment/ecology research field using text mining to analyze the bibliographic information of global research literature. Domestic UAV-related studies were classified into seven clusters where basic research on "UAV technology/industry trends" was abundant, and studies on data collection and analysis through UAV remote sensing technology have increased since 2015. Eight clusters were identified for international studies where the most active research area international was "remote sensing technology/data analysis". In addition, Canopy, Classification, Forest, Leaf Area Index, Normalized Difference Vegetation Index, Temperature, Tree, and Atmosphere appeared as the main keywords related to environment and ecology. The appearance frequencies and association strengths were high because the advancement in UAV optical sensor technology and the rapid development of image processing technology enabled the acquisition of data that could not be obtained from existing spatial information. They are recognized as future research topics as related domestic studies have begun corresponding to international research.

UAV Performance Improvement Using Integrated Analysis and Design Optimization Technology (통합 해석 및 설계 최적화 기술을 이용한 무인기 성능 향상 연구)

  • Kim, Jimin;Nguyen, Nhu Van;Shu, Jung-Il;Maxim, Tyan;Lee, Jae-Woo;Kim, Sangho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • This paper describes the design optimization of Unmanned Aerial Vehicles(UAVs). An optimization framework has been developed and implemented for the conceptual design of UAVs. An integrated design analysis program was developed with several analysis modules such as propulsion, performance, mission, weight, and stability and control. A UAV configuration design optimization was performed by implementing the integrated analysis to enhance the endurance of UAVs. A SQP optimizer was utilized to build an optimization module for this program and sensitivity analysis was performed to determine the trends of shape variables for developing optimization objective. In conclusion, the results indicate that the resulting optimized UAVs configurations show performance improvements over the baseline design and reliable analysis results.