• Title/Summary/Keyword: UAM traffic flow management

Search Result 3, Processing Time 0.016 seconds

UAM Traffic Flow Management Based on Milestone in Collaborative Decision-Making (협력적 의사결정체계(CDM) 마일스톤 기반 도심항공교통(UAM) 흐름관리)

  • Do-hyun Kim;Hyo-seok Chang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.436-441
    • /
    • 2024
  • Urban air mobility (UAM) is an innovative air traffic management system that utilizes electric vertical take off and landing aircraft(eVTOL) to transport passengers and cargo in urban areas. The corridor can be defined as the airspace that the vehicle operates in and must be collaboratively managed. For the stable operation of UAM, it is essential to have strategic separation and a collaborative decision-making(CDM) system for cooperation and coordination among stakeholders. This study examines the application of time-based milestones from traditional air traffic flow management to the UAM system to ensure safe traffic volume and optimize air traffic flow. For traffic flow management, the milestone time information is categorized into a total of 13 key milestone time indicators based on the UAM movement status, and the sharing entities providing each time indicator and the flow of milestones are defined. Emphasizing the need for a CDM to balance UAM traffic and capacity, sharing and managing milestone information among stakeholders is expected to improve UAM aircraft departure flow and enhance operational efficiency.

A Study on UAM Traffic Management System Development Trends and Concept Design (UAM 교통관제시스템 개발 동향 및 설계 개념 연구)

  • Changhwan Heo;Kwangchun Kang;Heungkuen Yoon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • In aviation, with the rapid transformation of the mobility industry, UAMs are emerging to operate green low-altitude airspace in urban environments. In order for UAM aircraft to fly safely transporting passengers and cargo in low-altitude urban airspace, a traffic control system that supports the safe operation of the aircraft is essential. In particular, traffic control systems that reflect the characteristics of the flight environment, such as operating at low altitude in urban environments for a short period of time, are required. In this study, we define the definition of UATM and its main services that perform traffic control for the safe operation of UAMs. In addition, we analyzed the development trends of UATM systems based on domestic and overseas cases. Based on these analyses, we present the results of the concept design of the UATM system. After analyzing UATM development cases, we found that there is no commercialized UATM system, but overseas development is focused on systems that can integrate ATM and UTM. And we identified key stakeholders and interface data, and performed UATM system architecture and functional design based on the identified data. Finally, as a necessary element for the future development of UATM systems, we propose the establishment and advancement of UAM traffic flow management systems, the establishment of integrated control systems, and the development of interface with aircraft operation systems in preparation for the unmanned UAM aircraft.

Utilizing and Implementing SWIM FF-ICE for Flight Plan Management of UAM (UAM 비행계획 관리를 위한 SWIM FF-ICE 활용 및 구현 방안)

  • Kwang-chun Kang;Su-young Shin;Hyoung-keun Yoon;Tae-gyeong Yun
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.420-427
    • /
    • 2024
  • This study proposes a method for utilizing flight and flow - information for a collaborative environment (FF-ICE) for flight plan management based system wide information management (SWIM) technology for the safe and efficient operation of urban air mobility (UAM). SWIM provides a standardized infrastructure for air traffic data, enabling seamless information exchange among various stakeholders. This study purposed flight plan procedures for UAM operation regarding submitting preliminary and filed flight plans, validation and operational evaluation processes, state management, and the roles of each stakeholder. The system developed through the SWIM infrastructure for low-density urban air mobility traffic management. The study are expected to significantly enhance the safety and efficiency of UAM operations through strategic flight plan management methods.