• Title/Summary/Keyword: U-shape

Search Result 784, Processing Time 0.035 seconds

Preparation and Characterization of Uranium Silicide Dispersion Nuclear Fuel by Centrifugal Atomization (원심분무에 의한 Uranlum filicide 분산핵연료의 제조와 특성)

  • 김창규
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.72-78
    • /
    • 1994
  • Two kinds of $U_3Si$ powders and $U_3Si$ dispersed nuclear fuel meats have been prepared by conventional comminution process and a newly developed rotating disk atomization process. In contrast to angular shape and broad size distribution of the conventionally processed powder, the atomized powder was spherical and showed narrow size distribution. For the atomized powder, the heat treatment time for the formation of $U_3Si$ by a peritectoid reaction was reduced to about one tenth, thanks to microstructure refinement by rapid cooling of about 5$\times$104 K/s. The extruding pressure of atomized $U_3Si$ powder and Al powder mixture was lower than that of comminuted $U_3Si$ and Al powder mixture. The elongation of the atomization processed fuel meats was much higher than that of the comminution processed fuel meats and remained over 10% up to 80wt.% of $U_3Si$ powder fraction in the fuel meats. It appears therefore that the loading density of $U_3Si$ in fuel meat can be increased by using atomized $U_3Si$ powder. The atomized spherical particles were randomly distributed, while the comminuted particles with angular and longish shape were considerably aligned along the extrusion direction. Along the transverse direction of the extraction the electrical conductivity of the atomization processed fuel meats was appreciably higher than that of comminution processed fuel meats. This tendency became pronounced as $U_3Si$ content increased. Because the thermal conduction which is believed to be proportioned to the electrical conduction in the nuclear fuel meats occurs in radial direction, the atomization processed fuel can be better used in research reactors where high thermal conductivity is required.

  • PDF

Effect of Surface Microstructure of Silicon Substrate on the Reflectance and Short-Circuit Current (실리콘 기판 표면 형상에 따른 반사특성 및 광 전류 개선 효과)

  • Yeon, Chang Bong;Lee, Yoo Jeong;Lim, Jung Wook;Yun, Sun Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately $60^{\circ}$. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/$cm^2$. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.

A study on the shape optimization of ship's bellows (선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.S.;Kim H.J.;Cho W.S.;Jeh S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1303-1306
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The results shows that if the number of mountains are reduced, the volume decreases while the stress increases. However, the number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF

Analysis of roll deformation for sendzimir rolling mill (젠지미어 압연기 롤 변형해석)

  • 이영호;김종택;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1689-1699
    • /
    • 1990
  • Sendzimir rolling mill is widely used for rolling hard materials such as stainless steel due to its small work roll diameter and shape controllability using two effective actuators, AS-U-Roll crown adjustment and lst. intermediate roll shifting. However, in comparison with 4-high or 6-high mills, it is noteasy to get good strip or excellent flatness because Z-mill has small diameter of work rolls which are easily deformed by load. A new mathematical model based on the method of dividing roll and strip into multo-portions was used to develop strip profile prediction software. Using the developed software, several influencing factors related to rolled strip profile for Z-Mill were tested analytically and characterized for the effective shape control. The effects of adjusting shape control actuators of Z-Mill on strip profile were also examined and discussed in detail.

U-loop emergence on the Sun

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2011
  • In this talk we explain U-loop emergence, in which U-shaped field lines emerge into the solar surface against gravitational force. In principle, they hardly emerge because mass tends to accumulate at the bottom of U-loops, thereby decreasing buoyancy. A key is found to be the shape of U-loops, that is, if U-loops have a shallow dip whose depth is of the order of the photospheric gravitational scale height, then a diverging flow is generated via a siphon-like mechanism by which the mass accumulated at the dip of the loops is drained out to enhance buoyancy. This successfully makes U-part of the loops emerge against gravity. We also discuss the relation between U-loop emergence and the so-called flux cancellation observed on the Sun in which opposite polarity regions apparently approach together and disappear.

  • PDF

Bearing Capacity Characteristics of Shallow Foundation by Three Dimension FEM (3차원 유한요소해석에 의한 얕은 기초의 지지력 특성)

  • Park, Choon-Sik;Kim, Jong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to understand the characteristics of bearing capacity of shallow foundation on the grounds. We made a comparative study of existing bearing capacity theory, based on the three-dimensional finite element analysis with a variety of conditions such as ground condition, foundation scale and foundation shape. In the finite element analysis, the ultimate bearing capacity showed a gradual convergence in the form of exponential function or logarithm function according to the foundation scale. Although the shear strength increased, the bearing capacity tended not to increase but change linearly. In the results of comparative study of existing bearing capacity theory, bearing capacity ratio ($q_{u(FEA)}/q_{u(theory)}$) of pure sand has the outcome closest to those of the Terzaghi method. Pure clay turned out to be about 0.4~0.6 while normal soil was changed in a range of 0.3~1.3. As shear strength is increased, the results turned out to be less than 1.0. Bearing capacity ratio ($q_u/q_{u(1.0)}$), normalized at 1.0m bearing capacity, was about 35%, 15% and 5% of theoretical formula under the condition of ${\phi}=25^{\circ}$, $30^{\circ}$ and $35^{\circ}$ of pure sand; no scale effect was found with pure clay and the normal soil with lower soil strength level showed less than 10% of the theoretical formula of pure sand. Bearing capacity ratio of each case, in accordance with, the shear strength increase, was largely influenced by the internal friction angle. Shape factor of bearing capacity ratios classified by foundation shapes have different results according to the shapes; the shape factor of circular foundation is 1.50, square foundation is 1.30, rectangular and continuous foundations are 1.1~1.0.

Fatigue performance of rib-roof weld in steel bridge decks with corner braces

  • Fu, Zhongqiu;Ji, Bohai;Wang, Yixun;Xu, Jie
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2018
  • To study the effects of corner braces on fatigue performance of the U-rib and roof weld in steel bridge decks, the fatigue experiment was carried out to compare characteristics of the crack shape with and without corner braces. The improvement of fatigue life and stress variation after setting corner braces were also analysed. Different parameters of corner brace sizes, arrangements, and detail types were considered in the FEM models to obtain stress distribution and variation at the weld. Furthermore, enhancement of the fatigue performance by corner braces was evaluated. The results demonstrated that the corner brace could improve the fatigue life of the U-rib and roof weld, which exerted even no influence on the crack shape. Moreover, stress of the roof weld was decreased and the crack position was transferred from the root weld to U-rib and corner brace weld. It was suggested no weld scallop should be drilled on the corner brace. A transverse rib with lower height which was set between U-ribs was favourable for improvement of fatigue performance.

Vision-based support in the characterization of superelastic U-shaped SMA elements

  • Casciati, F.;Casciati, S.;Colnaghi, A.;Faravelli, L.;Rosadini, L.;Zhu, S.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.641-648
    • /
    • 2019
  • The authors investigate the feasibility of applying a vision-based displacement-measurement technique in the characterization of a SMA damper recently introduced in the literature. The experimental campaign tests a steel frame on a uni-axial shaking table driven by sinusoidal signals in the frequency range from 1Hz to 5Hz. Three different cameras are used to collect the images, namely an industrial camera and two commercial smartphones. The achieved results are compared. The camera showing the better performance is then used to test the same frame after its base isolation. U-shaped, shape-memory-alloy (SMA) elements are installed as dampers at the isolation level. The accelerations of the shaking table and those of the frame basement are measured by accelerometers. A system of markers is glued on these system components, as well as along the U-shaped elements serving as dampers. The different phases of the test are discussed, in the attempt to obtain as much possible information on the behavior of the SMA elements. Several tests were carried out until the thinner U-shaped element went to failure.

Study on the Cyclic Seismic Testing of U-shape Hybrid Composite Beam-to-Composite Column Connections (신형상 U형 하이브리드 합성보와 기둥 접합부의 내진성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.47-59
    • /
    • 2013
  • This study that is a successive secondary study right after the primary bending strength test of a new form of U-shape hybrid composite beam is a cyclic seismic test of U-shape hybrid composite beam and column conncetion. Three specimens are built for the variables which are kinds of columns, depth of beam, continuity or discontinuity of upper plate of beam, and a number of steel bars of end-beam. Kinds of columns are a reinforcement concrete column and a ACT column of CFT shape, and beam depth are 300, and 500 mm. Detail of connection is bolt connection with using a short bracket that is commonly use. As the result, deformability of 2~4% is ensured the floor displacement angle. If it is the negative moment, the maximum moment shows that its capacity is above the nominal moment.