• Title/Summary/Keyword: U-Mo Fuel

Search Result 56, Processing Time 0.022 seconds

Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU) (저농축 우라늄을 사용하는 핵분열 몰리브덴-99 생산에 관련된 방사성 폐기물 연구)

  • Hassan, Muhmood ul;Ryu, Ho Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Technetium-99m (99mTc) is an important, short-lived decay product of molybdenum-99 (99Mo), and it is considered the backbone of the modern nuclear diagnostic procedures. Since fission of 235U is the main source of production of 99Mo, either highly-enriched uranium (HEU) targets or low-enriched uranium (LEU) targets are irradiated in the research reactors. The use of LEU targets is being promoted by the international community to avoid the proliferation issues linked with the use of HEU. In order to define the waste management strategy at the planning stage of establishment of an LEU based 99Mo production facility, the impact of the use of LEU targets on the radioactive waste stream of the 99Mo production facility was analyzed. Because the volume of uranium waste is estimated to increase six times, the use of high uranium density targets and the utilization of hot isostatic pressing were recommended to reduce the increased waste volume from the use of LEU based targets.

The Characteristics of an Oxidative Dissolution of Simulated Fission Product Oxides in $(NH_4)_2CO_3$ Solution Containing $H_2O_2$ ($H_2O_2$ 함유 $(NH_4)_2CO_3$ 용액에서 모의 FP-산화물의 산화용해 특성)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This study has been carried out to look into the characteristics of an oxidative-dissolution of fission products (FP) co-dissolved with uranium (U) in a $(NH_4)_2CO_3$ carbonate solution. Simulated FP-oxides which contained 12 components have been added to the solution to examine their dissolution characteristics. It is found that $H_2O_2$ is an effective oxidant to minimize the oxidative-dissolution of FP. In the 0.5 M $(NH_4)_2CO_3$-0.5 M $H_2O_2$ solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U, while 98${\pm}$2% for Re and Te, 94${\pm}$2% for Cs, and 29${\pm}$2 % for Mo are dissolved for 2 hours. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10${\sim}$20 minutes) due to their high solubility in the $(NH_4)_2CO_3$ solution regardless of the addition of $H_2O_2$, and independent of the concentrations of $Na_2CO_3$ and $H_2O_2$. However, the dissolution ratio of Mo seems to be slightly increased with time and about 33 % for 4 hours, indicating a very slow dissolution rate and also independent of the $(NH_4)_2CO_3$ concentration. It is found that the most important factor for the oxidative-dissolution of FP is the pH of the solution and an effective dissolution is achieved at a pH between 9${\sim}$10 in order to minimize the dissolution of FP.

  • PDF

The Sintering Behavior of the Hyperstoichiometric Uranium Dioxide in the Oxidative Atmosphere (약 산화성 분위기 중에서의 과산화성 2산화 우라늄의 소결에 관한 연구)

  • Jang Keu Han;Won Ku Park;Han Su Kim
    • Nuclear Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 1983
  • The slightly hyperstoichiometric uranium dioxide, i.e. U $O_{2.005}$ and U $O_{2.01}$ within a range of the requirement for the use of a nuclear fuel, were sintered directly in an atmosphere of $CO_2$/CO mixture without any succeeding reduction process. The kinetics of sintering in the late stage were investigated for various O/U ratios. A sintering diagram, which show the relation of Temperature-Time-Density-Grain size, was established for each O/U ratio. Only by controlling the oxygen partial pressure in the sintering atmosphere, U $O_2$ pellet could be sintered very easily at low temperature 1050$^{\circ}$~120$0^{\circ}C$ with a density above 95% T.D. and average grain size above 7${\mu}{\textrm}{m}$. It was found that the rate of grain growth follows D=(Kt)$^{1}$4/ in the late stage of sintering. And the activation energies for grain growth in the final sintering stage were found to be 75, 64 and 62kca1/mo1 for U $O_{2.005}$, U $O_{2.01}$ and U $O_{2.10}$, respectively. Although no significant differences are obtained between the activation energies for different O/U ratios, the sinterability is enhanced considerably with increasing the oxygen partial pressure in the sintering atmosphere.tmosphere.

  • PDF

Oxidation Behavior of $UO_2$ in Air ($UO_2$ 의 공기중 산화거동)

  • You, Gil-Sung;Kim, Keon-Sik;Min, Duck-Kee;Ro, Seung-Gy;Kim, Eun-Ka
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 1995
  • To investigate the storage behavior of the defective LWR spent fuel, air-oxidation tests on non-irradiated and irradiated U $O_2$ were performed. The weight gains of non-irradiated U $O_2$ specimens are characterized by the S-shape curves at 250-40$0^{\circ}C$ temperature range. One hundred percent conversion of U $O_2$ to U$_3$ $O_{8}$ corresponds with about 4% weight increase. The activation energies are 110 kJ/mol above 35$0^{\circ}C$ and 153 kJ/mol below 35$0^{\circ}C$. The irradiated U $O_2$ specimens with about 35 GWD/MTU burnup were oxidized at 300-40$0^{\circ}C$ in air. They show a rapid increase of weight gain at the initial stage and a slow increase at the later stage when compared with non-irradiated U $O_2$. The activation energy under these conditions is 95 kJ/mol. Burnup and aging effects of irradiated U $O_2$ were also investigated at 35$0^{\circ}C$ in air environment, but the specimens appears insensitive to these variables.s.

  • PDF

Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds (삼상 Swirling 유동층에서 열전달 특성)

  • Son, Sung-Mo;Shin, Ik-Sang;Kang, Yong;Cho, Yong-Jun;Yang, Hee-Chun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio ($R_S$) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.

Chemical Stability Evaluation of Ceramic Materials for Liquid Cadmium Cathode (액체카드뮴음금용 세라믹 소재의 화학적 안정성 평가)

  • Ku, Kwang-Mo;Ryu, Hong-Youl;Kim, Seung-Hyun;Kim, Dae-Young;Hwang, Il-Soon;Sim, Jun-Bo;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • LCC (Liquid cadmium cathode) is used for electrowinning in pyroprocessing to recover uranium and transuranic elements simultaneously. It is one of the core technologies in pyroprocessing with higher proliferation resistance than a wet reprocessing because LCC-cell does not separate TRU from uranium. The crucible which holds the LCC is technically important because it should be nonconducting material to prevent deposition of metallic elements on the crucible outer surface. The chemical stability is also crucial factor to choose crucible material due to the strong reactivities of TRU and possible incorporation of Li metal during the operation. In this study, the chemical stabilities of four kinds of representative ceramic materials such as $Al_2O_3$, MgO, $Yl_2O_3$ and BeO were thermodynamically and experimentally evaluated at $500^{\circ}C$ with simulated LCC. The contact angle of LCC on ceramic materials was measured as function of time to predict chemical reactivity. $All_2O_3$ showed poorest chemical stability and the pores in BeO contributed to a decreases in contact angle. MgO and $Y_2O_3$ have superior chemical stability among the materials.