• Title/Summary/Keyword: U-Car

Search Result 108, Processing Time 0.024 seconds

A Study on Velocity-Brake Force Resulted from Deceleration Signal (감속도 신호에 의한 속도-제동력 고찰)

  • Lee, U-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.616-620
    • /
    • 2003
  • Brake action is important in train operation. In case of diesel motor cas, coachs and wagon, the brake system is only act on the stop of train, but it is emphasis on safety and convenience in urban transit system such as EMU, subwar, AGT, etc. Brake of EMU has two types. one is called service brake that is used at normal operation. The other is called emergency brake. it is used at emergency operation. Service brake bring a EMU to a halt through a blending brake that form electronic brake and frictional brake. Generally EMU compose motor car and trailer car. Blending brake bring a EMU to a halt through a blending brake that form electronic brake of motor car and frictional brake of trailer car. Blending braking technology have different characteristics each nations or manufacturing companies. but deceleration command that is parameter decide blending brake. According to deceleration command, electronic brake and frictional brake are applied differently So braking power is different. electronic brake and frictional brake must be used appropriately as deceleration command. Also braking facilities must be stopped EMU more economically and safely through revision of algorism about blending brake according to output diagram. Thus The purpose of paper is to propose blending braking control way as consideration of braking output diagram used deceleration command that influence blending brake of EMU.

  • PDF

Location for a Car Crash and The Service System (차량 충돌 사고에 대한 위치 확인 및 서비스 시스템)

  • Moon, Seung-Jin;Lee, Yong-Joo
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.381-388
    • /
    • 2009
  • The spread of wireless Internet technology development and applications with location information in the form of location-based services are becoming more diverse. In particular, where you recognize the location of objects such as people and things and to provide valuable services based on the ubiquitous and location-based services are emerging as an important service. The collision between the vehicle position measurement in this thesis and offers related service system. Used in the proposed system, the GPS PACKET with information about the location and time of collision for the vehicle crash, the vehicle consists of a NodeID. Cause a conflict between these data at the vehicle, the vehicle through the gateway from the server to decide whether to go on to determine that an emergency situation, Emergency Center, the location information and giving information about whether the conflict is measured. Also, for such an emergency, such as a family on the outside of the wireless terminal related to Wireless (PDA, Phone) is to let me know. The server to want to save the crash information to the database of configuration. Additionally, the proposed U-LBS system to verify the validity of the experiment was performed.

Experimental study on the influence of Reynolds number and roll angle on train aerodynamics

  • Huang, Zhixiang;Li, Wenhui;Liu, Tanghong;Chen, Li
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • When the rolling stocks run on the curve, the external rail has to be lifted to a certain level to balance the centrifugal force acting on the train body. Under such a situation, passengers may feel uncomfortable, and the slanted vehicle has the potential overturning risks at high speed. This paper conducted a wind tunnel test in an annular wind tunnel with φ=3.2 m based on a 1/20th scaled high-speed train (HST) model. The sensitivity of Reynolds effects ranging from Re = 0.37×106 to Re = 1.45×106 was tested based on the incoming wind from U=30 m/s to U=113 m/s. The wind speed covers the range from incompressible to compressible. The impact of roll angle ranging from γ=0° to γ=4° on train aerodynamics was tested. In addition, the boundary layer development was also analyzed under different wind speeds. The results indicate that drag and lift aerodynamic coefficients gradually stabilized and converged over U=70 m/s, which could be regeared as the self-similarity region. Similarly, the thickness of the boundary layer on the floor gradually decreased with the wind speed increase, and little changed over U=80 m/s. The rolling moment of the head and tail cars increased with the roll angle from γ=0° to γ=4°. However, the potential overturning risks of the head car are higher than the tail car with the increase of the roll angle. This study is significant in providing a reference for the overturning assessment of HST.

Implementation of Vehicle Location Identification and Image Verification System in Port (항만내 차량 위치인식 및 영상 확인 시스템 구현)

  • Lee, Ki-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.201-208
    • /
    • 2009
  • As the ubiquitous environment is created, the latest ports introduce U-Port services in managing ports generally and embody container's location identification system, port terminal management system, and advanced information exchange system etc. In particular, the location identification system for freight cars and containers provide in real time the information on the location and condition for them, and enables them to cope with an efficient vehicle operation management and its related problems immediately. However, such a system is insufficient in effectively handling with the troubles in a large-scale port including freight car's disorderly driving, parking, stop, theft, damage, accident, trespassing and controlling. In order to solve these problems, this study structures the vehicle positioning system and the image verification system unsing high resolution image compression and AVE/H.264 store and transmission technology, able to mark and identify the vehicle location on the digital map while a freight car has stayed in a port since the entry of an automatic gate, or able to identify the place of accident through image remotely.

Performance of IEEE 802.11b WLAN Standard at In-Vehicle Environment for Intelligent U-Car System (지능형 U-Car에서 IEEE 802.11b을 이용한 차량 내 데이터 무선 랜 전송 성능 분석)

  • Lee Seung-Hwan;Heo Soo-Jung;Park Yong-Wan;Lee Sang-Shin;Lee Dong-Hahk;Yu Jae-Hwang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.80-87
    • /
    • 2006
  • In this paper, we analyze the performance of IEEE 802.11b WLAN communication between access point(AP) and mobile equipment(ME) in 2.4 GHz band with noise and interference factors. WLAN communication at in-vehicle environment is assumed as the communication between main vehicle controller and electronic device such as sensor, ECU (Electrical Control Unit) in vehicle on telematics field for implementing wireless vehicle control system. Received interference level from other system's mobile equipment in the same band and automobile noise from each part of vehicle can be the main factors that can cause increasing error rate of control signal. With these (actors, we focus on the Eb/No the BER performance of WLAN for analyzing the characteristic of interference factors by the measured bit error rate.

A Study on the Structural Stability of Edge Beam of U-Channel Bridge Under Impact Loads (충돌하중을 받는 U-채널 교량 측보의 구조적 안정성에 관한 연구)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.333-336
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Nevertheless, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, this study carries out analysis of behavior of edge beam and slab and evaluation of structural stability under impact loads, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification. According to analysis result, the maximum stress of edge beam and slab satisfies specification of allowable stress.

  • PDF

The Area Extraction of Car-Licence Plates using U Component of LUV Color Coordinate System (LUV 칼라 좌표계의 U성분을 이용한 차량 번호판 영역 추출)

  • 정송균;김성준;김정엽;현기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.641-645
    • /
    • 2003
  • 본 논문은 일반적으로 차량의 번호판이 차종에 따라 녹색계통과 노란색계통 등 일정한 색상을 가지고 있다는 특징을 이용하여, 복합 칼라 좌표계의 성분을 결합한 차량 번호판 영역 추출에 대한 방법을 제안하였다. LUV와 HSI 및 YIQ 칼라 좌표계에서 번호판 영역을 검출하기 위해 사용한 색상은 U, H, Q영역이고 이진화 작업을 위한 임계치 조정의 효율성을 높이기 위해 각 영역의 평균 자기 값을 기준이 되는 값으로 보정하는 방법을 사용하였다. 처리과정의 효율성을 높이기 위해 번호판 후보 영역을 선정하여 번호판 크기의 마스크영역을 수직, 수평 라인으로 검색하여 추출하는 방법을 사용하였다. 실험 결과 H와 Q성분으로만 실험대상에 대하여 결합한 경우는 72.58%의 추출률을 보인 반면, 제안한 방법인 U와 H 및 Q성분의 결합에 의한 경우는 100%의 추출률을 보였다.

  • PDF

Mechanism of RFID Authentication for u-Vehicle (u-Vehicle 환경에 적합한 RFID 인증 메커니즘)

  • Rhee, Yoon-Jung;Kim, Do-Hyeon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.66-73
    • /
    • 2008
  • The concept of u-Vehicle is a technological model that people try to build the ubiquitous world in the car which moves, by using the RFID technology as well as the telematics service based on the location. RFID is weak on the point of information security because RFID has possibility for being abused such as chasing, counterfeiting, and invading personal privacy. RFID's tags use a weak cryptographic algorithm. This paper presents the vulnerabilities of information security under u-Vehicle environments. To solve that, we propose a mechanism enhancing RFID tag's security but with low cost by reducing the number of mutual authentication stages and using the hash function.

A Study on Analysis of Development Effectiveness of Composite Brake through Real Car Comparison and Verification (실차 비교 및 검증을 통한 복합재 브레이크의 개발 효용성 분석에 관한 연구)

  • Shim, J.H.;Kwon, Y.U.;Lee, J.H.;Shin, U.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.41-47
    • /
    • 2022
  • Composite material is recently very important material for eco-friendly vehicles because of its excellent mechanical property and lightweight effect. So, many research results have been recently published for developing the composite material to apply vehicles. In this paper, new brake system is presented using composite material to response this situation. And advantages in terms of performance compared to competitive company will be discussed in depth to verify superiorities of the new composite brake. To do so, composite brake systems which have the same size as the competitive company to the same vehicle is applied. And superiorities through a variety of test results are presented. First, normal braking performances are compared with competitive company through braking effect, heat capacity and friction test, Second, circuit driving and high speed fade test are also verified with competitive company to confirm harsh braking performances for the new composite brake system. Finally, the effects of applying the composite brake to automobile industry like electric car are analyzed.

Physical and Biological Performance Evaluation of Disinfection Systems for Transportation Vehicles against AI Virus

  • Chung, Hansung;Choi, Kwanghoon;Kim, Sungkwan;Kim, Sukwon;Lee, Kyungwoo;Choe, Nonghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.956-966
    • /
    • 2021
  • To prevent the outbreak of infectious diseases that inflict huge economic and social losses, domestic livestock farms and related facilities have introduced automatic and semiautomatic disinfectant solution-spraying systems for vehicles. However, the facility standards and specifications vary by manufacturer, and no scientific performance evaluation has been conducted. The puropose of this study is to develop physical and biological evaluation methods. Physical and biological appraisals were conducted using two types of disinfection facilities (tunnel- and U-type) and two types of vehicles (passenger car, truck). Water-sensitive paper was used to evaluate the physical performance values for the disinfection facilities. In addition, to assess their biological performance, carriers containing low-pathogenic avian influenza virus were attached to vehicles, and the viral reduction was measured after the vehicles moved through the facility. The tunnel-type had rates of coverage in the range of 70-90% for the passenger car and 60-90% for the truck. At least 4-log virus reduction after spraying for 1-5 min was shown for both vehicles. For the U-type facility evaluation, the coverage rates were in the range of 60-90% for the passenger car and at least 90% for the truck. More than 4-log viral reduction was estimated within a spraying time of 5 min. To reduce viruses on the surface of vehicles by at least 4 log within a short period, the disinfectant solution should cover at least 71% of the pathogens. In conclusion, we were able to assess the physical and biological performance criteria for disinfection facilities aboard transportation vehicles.