• Title/Summary/Keyword: U forest

Search Result 326, Processing Time 0.032 seconds

Using Google Earth for a Dynamic Display of Future Climate Change and Its Potential Impacts in the Korean Peninsula (한반도 기후변화의 시각적 표현을 위한 Google Earth 활용)

  • Yoon, Kyung-Dahm;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.275-278
    • /
    • 2006
  • Google Earth enables people to easily find information linked to geographical locations. Google Earth consists of a collection of zoomable satellite images laid over a 3-D Earth model and any geographically referenced information can be uploaded to the Web and then downloaded directly into Google Earth. This can be achieved by encoding in Google's open file format, KML (Keyhole Markup Language), where it is visible as a new layer superimposed on the satellite images. We used KML to create and share fine resolution gridded temperature data projected to 3 climatological normal years between 2011-2100 to visualize the site-specific warming and the resultant earlier blooming of spring flowers over the Korean Peninsula. Gridded temperature and phonology data were initially prepared in ArcGIS GRID format and converted to image files (.png), which can be loaded as new layers on Google Earth. We used a high resolution LCD monitor with a 2,560 by 1,600 resolution driven by a dual link DVI card to facilitate visual effects during the demonstration.

Performance of Northern Exposure Index in Reducing Estimation Error for Daily Maximum Temperature over a Rugged Terrain (북향개방지수가 복잡지형의 일 최고기온 추정오차 저감에 미치는 영향)

  • Chung, U-Ran;Lee, Kwang-Hoe;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2007
  • The normalized difference in incident solar energy between a target surface and a level surface (overheating index, OHI) is useful in eliminating estimation error of site-specific maximum temperature in complex terrain. Due to the complexity in its calculation, however, an empirical proxy variable called northern exposure index (NEI) which combines slope and aspect has been used to estimate OHI based on empirical relationships between the two. An experiment with real-world landscape and temperature data was carried out to evaluate performance of the NEI - derived OHI (N-OHI) in reduction of spatial interpolation error for daily maximum temperature compared with that by the original OHI. We collected daily maximum temperature data from 7 sites in a mountainous watershed with a $149 km^2$ area and a 795m elevation range ($651{\sim}1,445m$) in Pyongchang, Kangwon province. Northern exposure index was calculated for the entire 166,050 grid cells constituting the watershed based on a 30-m digital elevation model. Daily OHI was calculated for the same watershed ana regressed to the variation of NEI. The regression equations were used to estimate N-OHI for 15th of each month. Deviations in daily maximum temperature at 7 sites from those measured at the nearby synoptic station were calculated from June 2006 to February 2007 and regressed to the N-OHI. The same procedure was repeated with the original OHI values. The ratio sum of square errors contributable by the N-OHI were 0.46 (winter), 0.24 (fall), and 0.01 (summer), while those by the original OHI were 0.52, 0.37 and 0.15, respectively.

Feasibility of Stochastic Weather Data as an Input to Plant Phenology Models (식물계절모형 입력자료로서 확률추정 기상자료의 이용 가능성)

  • Kim, Dae-Jun;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Daily temperature data produced by harmonic analysis of monthly climate summary have been used as an input to plant phenology model. This study was carried out to evaluate the performance of the harmonic based daily temperature data in prediction of major phenological developments and to apply the results in improving decision support for agricultural production in relation to the climate change scenarios. Daily maximum and minimum temperature data for a climatological normal year (Jan. 1 to Dec. 31, 1971-2000) were produced by harmonic analysis of the monthly climate means for Seoul weather station. The data were used as inputs to a thermal time - based phenology model to predict dormancy, budburst, and flowering of Japanese cherry in Seoul. Daily temperature measurements at Seoul station from 1971 to 2000 were used to run the same model and the results were compared with the harmonic data case. Leaving no information on annual variation aside, the harmonic based simulation showed 25 days earlier release from endodormancy, 57 days longer period for maximum cold tolerance, delayed budburst and flowering by 14 and 13 days, respectively, compared with the simulation based on the observed data. As an alternative to the harmonic data, 30 years daily temperature data were generated by a stochastic process (SIMMETEO + WGEN) using climatic summary of Seoul station for 1971-2000. When these data were used to simulate major phenology of Japanese cherry for 30 years, deviations from the results using observed data were much less than the harmonic data case: 6 days earlier dormancy release, 10 days reduction in maximum cold tolerance period, only 3 and 2 days delay in budburst and flowering, respectively. Inter-annual variation in phenological developments was also in accordance with the observed data. If stochastically generated temperature data could be used in agroclimatic mapping and zoning, more reliable and practical aids will be available to climate change adaptation policy or decision makers.

Nitrogen-15 Determination in Tissues of Laying Hens Fed on Different Levels of $^{15}N-Chlorocholine$ Chloride ($^{15}N-CCC$) Diets

  • Nurhayati, Nurhayati;Thinggaard, Grete;Chakeredza, S.;Reineking, A.;Langel, R.;ter Meulen, U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.412-417
    • /
    • 2007
  • An experiment was conducted to determine the distribution of nitrogen-15 in tissues of laying hens receiving different levels of $^{15}N$-CCC in diets. Twenty brown laying hens were divided into four groups and randomly assigned into one of four dietary treatment groups consisting of 0, 5, 50 and 100 ppm $^{15}N$-CCC inclusion. The hens were individually fed with the $^{15}N$-CCC diets in battery cages for 11 days and then all hens restored to feeding on the control diet for 7 days. After eleven days, eight hens were slaughtered, and the others were slaughtered seven days after $^{15}N$-CCC diets withdrawal. Samples of blood, liver, heart and meat were collected and their $^{15}N$ contents were determined. The ${\delta}^{15}N$ excess (${\delta}^{15}N$-ex) and atom percentage excess in $^{15}N$ were calculated. The ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ increased significantly (p<0.05) with increasing levels of $^{15}N$-CCC in diets in all tissues after feeding $^{15}N$-CCC diets for eleven days. The highest concentration of ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ were detected in blood, followed in order by liver, heart and thigh meat. The concentrations reduced significantly (p<0.05) after $^{15}N$-CCC diets were withdrawn. Comparison between treatment groups showed that ${\delta}^{15}N$-ex and atom percentage excess $^{15}N$ were still higher in hens that had been fed diets with higher levels of $^{15}N$-CCC. This study showed that nitrogen-15 was distributed in blood, liver, heart and meat of laying hens.

Estimation and validation of the genetic coefficient of cv. Superior for the DSSAT-CSM (DSSAT 작물모형을 위한 수미품종의 품종모수의 결정과 기후변화에서의 활용)

  • Bak, Gyeryeong;Lee, Gyejun;Lee, Eunkyeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.166-174
    • /
    • 2018
  • Potato(Solanum tuberosum L.) is one of the major food crop in the world following rice, wheat, and maize. It is thus important to project yield predict of potato under climate change conditions for assessment of food security. A crop growth modelling is widely used to simulate crop growth condition and total yield of various crops under a given climate condition. The decision support system for agrotechnology transfer (DSSAT) cropping system model, which was developed by U.S. which package integrating several models of 27 different crops, have been used to project crop yield for the impact assessment of climate change on crop production. In this study, we simulated potato yield using RCP 8.5 climate change scenario data, as inputs to the DSSAT model in five regions of Korea. The genetic coefficients of potato cultivar for 'superior', which is one of the most widely cultivated potato variety in Korea were determined. The GenCalc program, which is a submodule of the DSSAT package, was used to determine the genetic coefficients for the superior cultivar. The values of genetic coefficients were validated using results of 39 experiments performed over seven years in five regions. As a case study, the potato yield was projected that total yields of potato across five regions would increase by 26% in 2050s but decrease by 17% in 2090s, compared with 2010s. These results suggested that the needs for cultivation and irrigation technologies would be considerably large for planning and implementation of climate change adaptation for potato production in Korea.

Predicting Cherry Flowering Date Using a Plant Phonology Model (생물계절모형을 이용한 벚꽃 개화일 예측)

  • Jung J. E.;Kwon E. Y.;Chung U. R.;Yun J. I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • An accurate prediction of blooming date is crucial for many authorities to schedule and organize successful spring flower festivals in Korea. The Korea Meteorological Administration (KMA) has been using regression models combined with a subjective correction by forecasters to issue blooming date forecasts for major cities. Using mean monthly temperature data for February (observed) and March (predicted), they issue blooming date forecasts in late February to early March each year. The method has been proved accurate enough for the purpose of scheduling spring festivals in the relevant cities, but cannot be used in areas where no official climate and phenology data are available. We suggest a thermal time-based two-step phenological model for predicting the blooming dates of spring flowers, which can be applied to any geographic location regardless of data availability. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units until a pre-determined chilling requirement for rest release. After the projected rest release date, it accumulates daily heat units (growing degree days) until a pre- determined heating requirement for flowering. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree (Prunus serrulata var. spontanea) at KMA Seoul station along with daily temperature data for 1923-1950. The model was applied to the 1955-2004 daily temperature data to estimate the cherry blooming dates and the deviations from the observed dates were compared with those predicted by the KMA method. Our model performed better than the KMA method in predicting the cherry blooming dates during the last 50 years (MAE = 2.31 vs. 1.58, RMSE = 2.96 vs. 2.09), showing a strong feasibility of operational application.

A Geospatial Evaluation of Potential Sea Effects on Observed Air Temperature (해안지대 기온에 미치는 바다효과의 공간분석)

  • Kim, Soo-Ock;Yun, Jin-I.;Chung, U-Ran;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 2010
  • This study was carried out to quantify potential effects of the surrounding ocean on the observed air temperature at coastal weather stations in the Korean Peninsula. Daily maximum and minimum temperature data for 2001-2009 were collected from 66 Korea Meteorological Administration (KMA) stations and the monthly averages were calculated for further analyses. Monthly data from 27 inland sites were used to generate a gridded temperature surface for the whole Peninsula based on an inverse distance weighting and the local temperature at the remaining 39 sites were estimated by recent techniques in geospatial climatology which are widely used in correction of small - scale climate controls like cold air drainage, urban heat island, topography as well as elevation. Deviations from the observed temperature were regarded as the 'apparent' sea effect and showed a quasi-logarithmic relationship with the distance of each site from the nearest coastline. Potential effects of the sea on daily temperature might exceed $6.0^{\circ}C$ cooling in summer and $6.5^{\circ}C$ warming in winter according to this relationship. We classified 25 sites within the 10 km distance from the nearest coastline into 'coastal sites' and the remaining 15 'fringe sites'. When the average deviations of the fringe sites ($0.5^{\circ}C$ for daily maximum and $1.0^{\circ}C$ for daily minimum temperature) were used as the 'noise' and subtracted from the 'apparent' sea effects of the coastal sites, maximum cooling effects of the sea were identified as $1.5^{\circ}C$ on the west coast and $3.0^{\circ}C$ on the east and the south coast in summer months. The warming effects of the sea in winter ranged from $1.0^{\circ}C$ on the west and $3.5^{\circ}C$ on the south and east coasts.

Performance of Angstrom-Prescott Coefficients under Different Time Scales in Estimating Daily Solar Radiation in South Korea (시간규모가 다른 Angstrom-Prescott 계수가 남한의 일별 일사량 추정에 미치는 영향)

  • Choi, Mi-Hee;Yun, Jin-I.;Chung, U-Ran;Moon, Kyung-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.232-237
    • /
    • 2010
  • While global solar radiation is an essential input variable in crop models, the observation stations are relatively sparse compared with other meteorological elements. Instead of using measured solar radiation, the Angstrom-Prescott model estimates have been widely used. Monthly data for solar radiation and sunshine duration are a convenient basis for deriving Angstrom-Prescott coefficients (a, b), but it is uncertain whether daily solar radiation could be estimated with a sufficient accuracy by the monthly data - derived coefficients. We derived the Angstrom-Prescott coefficients from the 25 years observed global solar radiation and sunshine duration data at 18 locations across South Korea. In order to figure out any improvements in estimating daily solar radiation by replacing monthly data with daily data, the coefficients (a, b) for each month were derived separately from daily data and monthly data. Local coefficients for eight validation sites were extracted from the spatially interpolated maps of the coefficients and used to estimate daily solar radiation from September 2008 to August 2009 when, pyranometers were operated at the same sites for validation purpose. Comparison with the measured radiation showed a better performance of the daily data - derived coefficients in estimating daily global solar radiation than the monthly data - derived coefficients, showing 9.3% decrease in the root mean square error (RMSE).

The Specific Plant Species and Naturalized Plants in the Area of Naejangsan National Park, Korea (내장산국립공원 일대의 특정식물과 귀화식물)

  • Lee, Hee-Cheon;CheKar, Eun-Key;Lim, Dong-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.267-283
    • /
    • 2011
  • Endangered species designated by The Ministry of Environment in region of Naejangsan National Park were found Lycoris chinensis var. sinuolata K.H.Tae & S.T.Ko, Iris koreana Nakai, Cymbidium macrorrhizum Lindl and Vexillabium yakushimensis (Yamam.) F.Maek.(4 taxa). The floristic special plants were recorded to a total of 159 taxa; that is, class I species (91 taxa) were containing as Chloranthus fortunei (A.Gray) Solms, Vicia anguste-pinnata Nakai and Euscaphis japonica (Thunb.) Kanitz, etc, class II species (17 taxa) were Pseudostellaria coreana (Nakai) Ohwi, Dryopteris expansa (C.Presl) Fraser-Jenkins et Jermy and Gymnocarpium dryopteris (L.) Newman, etc, class III species (32 taxa) were containing; Cirsium setidens (Dunn) Nakai, Parasenecio pseudotaimingasa (Nakai) B.U.Oh and Saussurea eriophylla Nakai, etc, class IV species (9 taxa) were Deutzia paniculata Nakai, Carex ligulata Nees and Thuja orientalis L., etc, and class V species (10 taxon) were Orobanche filicicola Nakai, Lycoris chinensis var. sinuolata K.H.Tae & S.T.Ko and Lycoris sanguinea var. koreana (Nakai) T.Koyama, etc. Endemic species of korea were identified 40 taxa such as Broussonetia kazinoki var. humilis Uyeki, Pseudostellaria coreana (Nakai) Ohwi and Silene seoulensis Nakai, etc. Plant species designated as Natural Monument were 2 species that Daphniphyllum macropodum forest(No. 91) and Torreya nucifera forest(No. 153) receive protection. The naturalized plants were identified 30 taxa; Fallopia dumetorum (L.) Holub, Persicaria orientalis (L.) Spach and Rumex crispus L., etc. Among them the ecosystem disturbance wild plants was not discovered.

Combining Bias-correction on Regional Climate Simulations and ENSO Signal for Water Management: Case Study for Tampa Bay, Florida, U.S. (ENSO 패턴에 대한 MM5 강수 모의 결과의 유역단위 성능 평가: 플로리다 템파 지역을 중심으로)

  • Hwang, Syewoon;Hernandez, Jose
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.143-154
    • /
    • 2012
  • As demand of water resources and attentions to changes in climate (e.g., due to ENSO) increase, long/short term prediction of precipitation is getting necessary in water planning. This research evaluated the ability of MM5 to predict precipitation in the Tampa Bay region over 23 year period from 1986 to 2008. Additionally MM5 results were statistically bias-corrected using observation data at 33 stations over the study area using CDF-mapping approach and evaluated comparing to raw results for each ENSO phase (i.e., El Ni$\tilde{n}$o and La Ni$\tilde{n}$a). The bias-corrected model results accurately reproduced the monthly mean point precipitation values. Areal average daily/monthly precipitation predictions estimated using block-kriging algorithm showed fairly high accuracy with mean error of daily precipitation, 0.8 mm and mean error of monthly precipitation, 7.1 mm. The results evaluated according to ENSO phase showed that the accuracy in model output varies with the seasons and ENSO phases. Reasons for low predictions skills and alternatives for simulation improvement are discussed. A comprehensive evaluation including sensitivity to physics schemes, boundary conditions reanalysis products and updating land use maps is suggested to enhance model performance. We believe that the outcome of this research guides to a better implementation of regional climate modeling tools in water management at regional/seasonal scale.