• Title/Summary/Keyword: U형 비활성화

Search Result 1, Processing Time 0.015 seconds

Role of $Ca^{2+}$ for Inactivation of N-type Calcium Current in Rat Sympathetic Neurons (흰쥐 교감신경 뉴론 N형 칼슘전류의 비활성화에 미치는 칼슘효과)

  • Goo, Yong-Sook;Keith S. Elmslie
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.54-67
    • /
    • 2003
  • The voltage-dependence of N-type calcium current inactivation is U-shaped with the degree of inactivation roughly mirroring inward current. This voltage-dependence has been reported to result from a purely voltage-dependent mechanism. However, $Ca^{2+}$-dependent inactivation of N-channels has also been reported. We have investigated the role of $Ca^{2+}$ in N-channel inactivation by comparing the effects of $Ba^{2+}$and $Ca^{2+}$ on whole-cell N-current in rat superior cervical ganglion neurons. For individual cells in-activation was always larger in $Ca^{2+}$ than in $Ba^{2+}$ even when internal EGTA (11 mM) was replaced with BAPTA (20 mM). The inactivation vs. voltage relationship was U-shaped in both divalent cations. The enhancement of inactivation by $Ca^{2+}$ was inversely related with the magnitude of inactivation in $Ba^{2+}$ as if the mechanisms of inactivation were the same in both $Ba^{2+}$ and $Ca^{2+}$. In support of this idea we could separate fast ( ${\gamma}$ ~150 ms) and slow ( ${\gamma}$ ~ 2500 ms) components of inactivation in both $Ba^{2+}$and $Ca^{2+}$ using 5 sec voltage steps. Differential effects were observed on each component with $Ca^{2+}$ enhancing the magnitude of the fast component and the speed of the slow component. The larger amplitude of fast component indicates that the more channels inactivate via this pathway with $Ca^{2+}$ than with $Ba^{2+}$, but the stable time constants support the idea the fast inactivation mechanism is identical in $Ba^{2+}$and $Ca^{2+}$. The results do not support a $Ca^{2+}$-dependent mechanism for fast inactivation. However, the $Ca^{2+}$-induced acceleration of the slowly inactivating component could result from a $Ca^{2+}$-dependent process.

  • PDF