• 제목/요약/키워드: U$O_2$ 펠릿

검색결과 7건 처리시간 0.028초

설계 모델을 이용한 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 제작 (Manufacture of the vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets using a design model)

  • 김영환;윤지섭;정재후;홍동희;엄재법
    • 방사성폐기물학회지
    • /
    • 제4권3호
    • /
    • pp.255-263
    • /
    • 2006
  • $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치는 차세대관리 공정의 금속전환로 안으로 균질화된 분말을 공급하기 위하여 $UO_2$ 펠릿을 산화하여 $U_3O_8$으로 분말화하는 장치이다. 본 연구에는 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 설계모델을 제시하고, 실증용 분말화 장치를 제작하여 검증실험을 수행한다. 분말화 장치 설계모델은 내부구조, 성능, 가열로 위치와 크기 등이 고려된다. 실험 방법은 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 설계 모델에 따라 기존의 3단 메시 분말화 장치를 이용하여 분말의 메시 투과시험과 온도변화 특성 실험을 하여 장치 내부구조를 결정한다. $UO_2$ 펠릿 20 kg HM/batch의 산화 반응도 실험과 가열로 위치별 온도 분포를 측정하고 장치의 성능과 가열로의 영 역 위치를 결정한다. 장치 크기를 결정하기 위하여 산화전의 20kg의 $UO_2$ 펠릿과 산화후의 $U_3O_8$ 부피를 측정한다. 이상의 결과를 토대로 실증용 분말화 장치를 설계. 제작하고, 검증을 위하여 산화도, 분말특성 및 분석 등을 수행하였다. 산화반응 실험결과 에서 기존장치에 비하여 분말의 메시 투과율이 향상되었으며, 기존의 3단 메시 장치의 $UO_2$ 펠릿산화시간이 13시간 소요된 것에 비하여 8시간으로 단축되었다. $U_3O_8$ 분말 특성 분석결과, 평균 입도가 $40{\mu}m$이었다. 제작된 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 성능과 설계모델 예측 값은 대체로 잘 일치되었다.

  • PDF

산소농도 측정을 위한 $UO_{2}$ 펠릿 공기산화로 장치의 갈바닉 센서와 지르코니움 센서의 특성 연구

  • 김영환;정재후;이효직;박병석;윤지섭
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2007년도 학술논문요약집
    • /
    • pp.151-152
    • /
    • 2007
  • ACP(Advanced Spent Fuel Conditioning Process)의 금속전환로에 $U_{3}O_{8}$을 공급하기 위하여 20 kgHM/batch의 $UO_{2}$ 펠릿(pellets)을 처리할 수 있는 공기산화로가 개발되고 있다. 그림 1은 산소농도 조절이 가능한 공기산화로이다. 공기산화로 이전의 공정인 슬리팅 장치에서 탈피복된 $UO_{2}$ 펠릿은 공기산화로로 운반되고, $500^{\circ}C$온도에서 공기를 공급하여 일정한 입도범위의 균질한 $U_{3}O_{8}$을 만든다. 그리고 다음공정의 금속전환장치로 이동된다. 본 논문에서는 모의연료의 산화에 대한 정확한 산소농도를 측정하고자 한다. 이를 위해서 갈바닉 센서와 지르코니움 센서가 사용되었고, 그 특성이 비교되었다. 14종의 금속 산화물이 혼합된 모의연료를 제조하여 산화실험이 수행되었으며, 시간변화에 따라 산소농도가 측정되었다. 산소농도 컨트롤러와 산소 센서를 사용한 공기산화로는 산소조절기에 의해 산소농도 100%까지 측정될 수 있다. 그림 2는 공기산화로의 산소농도를 조절할 수 있는 산소농도 측정시스템이다. 유량조절기(Mass Flow Controller)를 사용하여 질소와 산소의 혼합비를 변화시킬 수 있다. 또한 산소농도 측정시스템은 측정된 산소농도 값을 이용하여 $UO_{2}$의 산화시간을 계산하기 위하여 제작하였다. 산화시간 계산방법은 다음과 같다. 산소와 질소의 가스는 각각 40 L의 압력 봄베에 의해서 산소농도를 조절할 수 있는 공기산화로의 산소농도 측정시스템 안으로 유입된다. 유입된 산소와 질소의 배합은 컨트롤시스템 안에 있는 산소 유량조절기와 질소 유량 조절기를 사용하여 조절하며, 일정하게 혼합된 산소농도는 장치의 입구와 출구에서 산소 센서에 의해서 측정된다. 투입된 $UO_{2}$ 펠릿이 $500^{\circ}C$에서 반응하면서 공기산화로의 내부에 있는 산소농도가 감소된다. 이때 초기에 같았던 입력과 출력 농도가 시간의 흐름에 따라 감소되며, 펠릿이 완전히 산화됨과 동시에 출력 산소농도가 입력농도와 다시 같아질 때까지 소요된 구간이 산화시간이 된다.

  • PDF

대용량 우라늄디옥사이드 펠릿 산화를 위한 공기산화로의 설계 고려사항에 대한 연구 (A Study on the Design Considerations of Vol-Oxidizer for High-Capacity Uranium Dioxide Pellets)

  • 정재후;이효직;박병석;윤지섭;김영환
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.472-482
    • /
    • 2007
  • This study deals with the design and implementation results for a high-capacity vol-oxidizer that can convert Uranium Dioxide pellets to $U_3O_8$ powder for up to several tens of kg HM/batch. We developed two versions of the $1^{st}$ vol-oxidizer and the $2^{nd}$ vol-oxidizer. Through an experiment with the $1^{st}$ vol-oxidizer, we deduced some problems concerning the design considerations such as the recovery rate of $U_3O_8$, the oxidation time of the Uranium Dioxide pellets, the exothermic reaction, and the powder dispersion. From the analyses of the drawbacks of the $1^{st}$ vol-oxidizer, we devised some novel items such as a folding type mesh, vibrators, and mixing blades. Also, we used the Stokes and Density ratio Eq. to determine the most reasonable flux for preventing a powder dispersion. Compared with the results of the $1^{st}$ vol-oxidizer, we showed that both the permeability of the $U_3O_8$ powders and the oxidation rate of the Uranium Dioxide pellets of the $2^{nd}$ vol-oxidizer were remarkably increased, and the temperature of the reactor was controlled well in spite of an exothermic reaction. Also, the powder was not entirely dispersed through the outlet of the voloxidizer. The experimental results of this work can help in the design of a novel and efficient vol-oxidizer with a higher capacity.

공기 유량의 시간 변화에 따른 $U_3O_8$ 타원입자에 대한 거동 특성 해석

  • 김영환;정재후;이효직;박병석;윤지섭
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2007년도 학술논문요약집
    • /
    • pp.305-306
    • /
    • 2007
  • ACP(Advanced Spent Fuel Conditioning Process)의 금속전환로에 $U_3O_8$을 공급하기 위하여 20 kgHM/batch의 $UO_2$ 펠릿(pellets)을 처리할 수 있는 건식분말화 장치가 개발되고있다. 건식분말화 장치는 500 $^{\circ}C$온도에서 공기를 공급하여 일정한 입도범위의 균질한 $U_3O_8$을 만든다. 이런 건식 분말화 장치의 효율을 높이기 위해서는 반웅로에 불어 넣어주는 공기의 유량을 증가시킬 필요가 있다. 하지만 공기와 반응하여 생성되는 $U_3O_8$ 입자는 그 크기가 최소 3 ${\mu}$m 정도로 매우 미세하여,반응로 출구를 통해 외부로 빠져나갈 가능성 이있다. 이를 방지하기 위해 분말화 장치 출구 바깥에는 필터가 설치되어 있으나 공기와 함께 $U_3O_8$ 입자가 계속해서 빠져 나갈 경우 입자로 인해 필터가 막혀 제 기능을 할 수 없게 된다. 따라서 건식 분말화 장치는 미세한 $U_3O_8$ 입자가 반응로 밖으로 빠져나가지 않도록 입구에서의 공기 유량을 일정 수준 이하로 조절해주는 것이 필요하다. 이 연구의 목적은 초기 유량으로부터 유량을 점점 증가시키면서 시간변화에 따른 입자 거동 특성을 해석하며, 결과로부터 주어진 크기의 타원입자에 대해 최대 허용 공기 유량을 결정하고자한다. 이 해석을 위해 유동과 입자를 동시에 해석할 수 있는 ANSYS-CFX 5.7.1과 ANSYS-CFX 10.0 두 가지의 소프트웨어가 사용되었다. 해석 결과를 바탕으로 좀더 정확한 유량 한계치 계산을 위해 추가로 수행되어야 할 해석에 대해 제안하였다.

  • PDF

사용후핵연료봉 slitting 장치 성능 평가 (Capacity evaluation on the slitting device of the spent fuel rod)

  • 정재후;윤지섭;김영환;진재현;김동기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1154-1157
    • /
    • 2003
  • The spent fuel slitting device is an equipment developed for the separation of the pellet and hull from the cutting fuel rod with length of 250 mm, and in order to feed UO$_2$ pellet. We have analyzed on the existing technologies for designing and producing of the slitting device in the first year(2001), based on these results, designed and produced the rod slitting device. It has effectively separated the pellet from the hull, but demanded the supplement separation work because of the mixing with pellet and hull in the vessel, and required the condition for the reducing time of the process. In the second year(2002), we have reduced the work time, performed the test and capacity evaluation with the improving device, based these results, and ensured the data demanded for designing of the spent fuel rod slitting device. We have compared with the DUPIC(Direct use of spent PWR fuel in CAND reactors) process, and developed the device for the purpose of reducing over 40 % in comparition with the DUPIC operation time(5 minutes). Based on these results, it will is effectively applied to available data for designing and producing of the hot test facility.

  • PDF

UO$_{2}$ 펠릿 산화로의 분말 비산 방지를 위한 최종속도 측정 (Measurement of Terminal Velocity for Scatter Prevention of Powder in the Voloxidizer for Oxidation of UO$_{2}$ Pellet)

  • 김영환;윤지섭;정재후;진재현;홍동희
    • 방사성폐기물학회지
    • /
    • 제3권2호
    • /
    • pp.77-84
    • /
    • 2005
  • 실증용 UO$_{2}$ pellet 산화로의 실증을 위한 제한된 핫셀 공간 안에서 사용후 핵 연료를 취급하는 산화로는 소형화 하여야 하고, 사용후 핵 연료 분말은 UO$_{2}$ pellet 산화로 장치로부터 비산되지 않아야 한다. 본 연구에서는 분말의 최종속도를 구하기 위하여 Stokes식과 밀도비식을 제안하였다. U$_{3}$O$_{8}$ 의 최종속도 SiO$_{2}$ 의 최종속도를 사용하여 예측하였고, 비산방지를 할 수 있는 최적유량을 결정하였다. SiO$_{2}$ 의 이론 최종속도 식을 검증하고, U$_{3}$O$_{8}$ 과 관계식을 예측하기 위하여 아크릴 장치를 만들었다. 목업시설 에 설치 된 산화로에서 제안된 이론최종속도식 인 Stokes식 의 20 L/min과 밀도비식의 14.5 L/min을 적용하여 U$_{3}$O$_{8}$ 분말의 필터감지에 의해 검증하였다. 그 결과 밀도비식에 의한 14.5 L/min은 U$_{3}$O$_{8}$ 이전혀 검출되지 않았고, Stokes식의 20 L/min에서는 평균 7$\mu$m 의 입도분말이 검출되었다. 따라서 UO$_{2}$ pellet 산화로에서 U$_{3}$O$_{8}$이 비산되지 않는 최적유량은 14.5L/min임을 알 수 있었고, 제안된 밀도비식이 바람직함을 알 수 있었다.

  • PDF

하나로를 이용한 비파괴검사용 $^{169}Yb$ 저에너지 밀봉선원 개발 (Development of $^{169}Yb$ Low-Energy Sealed Source for Nondestructive Testing Applications Utilizing HANARO)

  • 손광재;홍순복;장경덕;한현수;박울재;이준식;서기석;한인수;조운갑;이성식
    • 비파괴검사학회지
    • /
    • 제28권1호
    • /
    • pp.25-32
    • /
    • 2008
  • 본 연구에서는 하나로 및 동위원소생산시설을 활용하여 비파괴 검사에 사용되는 $^{169}Yb$ 선원의 생산 기술을 개발하였다. 천연 존재비 0.14%의 $^{168}Yb$ 을 20% 까지 농축한 $Yb_2O_3$ 분말을 표적물질로 사용하였고 이 물질의 방사화를 위하여 펠릿 성형기술 및 장치를 개발하였다. 중성자 조사를 위한 표적캡슐 및 기존 $^{192}Ir$ 선원 조사기에 사용이 가능한 선원 어셈블리를 설계 제작하였다. 또한, 하나로를 이용하여 약 5 Ci의 방사능 강도를 갖는 시험용 선원을 제작하여 $^{192}Ir$ 선원과 비파괴검사 성능을 비교 평가하여 선원의 우수함을 확인하였고 선원캡슐의 안전성시험을 실시하여 캡슐의 안전성을 검증하였다.