• Title/Summary/Keyword: Tyrosine kinase inhibitors

Search Result 147, Processing Time 0.031 seconds

Translocation of Annexin I to the Nucleus by Epidermal Growth Factor in A549 Cells

  • Rhee, Hae-Jin;Kim, Seung-Wook;Soo-Ok, Lee;Park, Young-Min;Na, Doe-Sun
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.28-32
    • /
    • 1999
  • Annexin I (also called lipocortin 1), a 37-kDa member of the annexin family of proteins, has been implicated in the mitogenic signal transduction by epidermal growth factor (EGF). Annexin I is phosphorylated by the EGF signal, however, the role of annexin I in the EGF signal transduction is still unknown. To transduce extracellular signals into the intracellular targets, selective translocation of the signaling molecules to their targets would be necessary. In this study, we examined the subcellular locations of annexin I during EGF signal transduction. Treatment of A549 cells with EGF resulted in the translocation of cytoplasmic annexin I to the nucleus and perinuclear region as determined by Western blot and immunofluorescent staining. The nuclear translocation of annexin I was inhibited by tyrphostin AG 1478 and genistein, the inhibitors of EGF receptor kinase and downstream tyrosine kineses, respectively. Pretreatment of cells with cyclohexamide did not inhibit the nuclear translocation. The results suggest that nuclear translocation of annexin I is controlled by a series of kinase dependent events in the EGF receptor signaling pathway and may be important in tranducing the signals by EGF.

  • PDF

Inhibition of IκB Kinase β (IKKβ) and Anti-diabetic Effect of SA51

  • Bhattarai, Bharat Raj;Kafle, Bhooshan;Hwang, Ji-Sun;Han, Inn-Oc;Cho, Hyeongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2487-2490
    • /
    • 2013
  • SA51, a medium potency inhibitor of protein tyrosine phosphatase 1B (PTP1B), was identified to be a potent inhibitor of $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$). Consistent with this, SA51 prevented lipopolysaccharide (LPS)-induced breakdown of $I{\kappa}B{\alpha}$ in macrophages. The effects of SA51 in mice were compared with those of structurally related compounds, SA18 and SA32, which were previously reported as inhibitors of both enzymes - less potent against $IKK{\beta}$ but more potent against PTP1B compared to SA51. SA51 improved glucose tolerance and lipid parameters in mice, consistent with the results reported for $IKK{\beta}^{+/-}$ mice. In contrast, SA18 and SA32 showed anti-obesity effects without anti-diabetic effects. Collectively, the effects of SA51 could be due largely to the inhibition of $IKK{\beta}$, whereas SA18 and SA32 may be more likely to inhibit PTP1B, consistent with their relative in vitro inhibitory effects.

Endpoint of Cancer Treatment: Targeted Therapies

  • Topcul, Mehmet;Cetin, Idil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4395-4403
    • /
    • 2014
  • Nowadays there are several limitations in cancer treatment. One of these is the use of conventional medicines which not only target cancer cells and thus also cause high toxicity precluding effective treatment. Recent elucidation of mechanisms that cause cancer has led to discovery of novel key molecules and pathways which have have become successful targets for the treatments that eliminate only cancer cells. These so-called targeted therapies offer new hope for millions of cancer patients, as briefly reveiwed here focusing on different types of agents, like PARP, CDK, tyrosine kinase, farnysyl transferase and proteasome inhibitors, monoclonal antibodies and antiangiogenic agents.

The EphA8 Receptor Phosphorylates and Activates Low Molecular Weight Phosphotyrosine Protein Phosphatase in Vitro

  • Park, Soo-Chul
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.288-293
    • /
    • 2003
  • Low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) has been implicated in modulating the EphB1-mediated signaling pathway. In this study, we demonstrated that the EphA8 receptor phosphorylates LMW-PTP in vitro. In addition, we discovered that mixing these two proteins leads to EphA8 dephosphorylation in the absence of phosphatase inhibitors. Finally, we demonstrated that LMW-PTP, modified by the EphA8 autokinase activity, possesses enhanced catalytic activity in vitro. These results suggest that LMW-PTP may also participate in a feedback-control mechanism of the EphA8 receptor autokinase activity in vivo.

Lung cancer and insurance medicine (폐암과 보험의학)

  • Lee, Sin-Hyung
    • The Journal of the Korean life insurance medical association
    • /
    • v.31 no.1
    • /
    • pp.34-36
    • /
    • 2012
  • Lung cancer such as small cell lung cancer(SCLC) and non small cell lung cancer(NSCLC) have high mortality rate, so, we insurance doctors have little interest in their risk. But nowadays there's a lot of development in targeted therapy of NSCLC. Screening by CT scanning and early resection strategy also shows better prognosis. It is helpful for underwriters and insurance doctors to review the current development of targeted therapy of NSCLC and estimation of extra-risk of early lung cancer. The preferred treatment option for patients whose tumors contain EGFR-activating mutations are one of the EGFR-directed tyrosine kinase inhibitors, such as gefitinib or erlotinib. In patients with NSCLC whose tumors harboured an ALK rearrangement, there was 61% objective response rate to crizotinib in the phase 1 study. The median survival progression-free survival was 10 months. Mortality analysis of early lung cancer who were detected by CT screening, MR of 105% and EDR of 1‰ were calculated.

  • PDF

PNA-mediated Real-Time PCR Clamping for Detection of EGFR Mutations

  • Choi, Jae-Jin;Cho, Min-Hey;Oh, Mi-Ae;Kim, Hyun-Sun;Kil, Min-Seock;Park, Hee-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3525-3529
    • /
    • 2010
  • Tyrosine kinase inhibitors (TKIs) are currently used in the treatment of patients with advanced lung cancer. Recent studies on non-small cell lung cancer have shown that some patients carry somatic mutations in the epidermal growth factor receptor (EGFR) gene. Such mutations correlate with the effectiveness of certain TKIs. To detect a small amount of mutant EGFR among an abundance of wild-type EGFR, we have developed a highly sensitive and simple method using PNA-mediated real-time PCR clamping. The PNA-mediated real-time PCR clamping enables detection of EGFR mutants down to approximately 1% mutant -to- wild type. The total assay time was short as it required only 2.0 hr. Thus, PNA-mediated real-time PCR clamping can easily be applied to clinical samples for identification of DNA carrying EGFR mutations and also appear to be the best assay to detect somatic mutations.

Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

  • Koo, Taeryool;Kim, In Ah
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

The 3D-QSAR Studies on the Indolinones Derivatives of PTKIs: CoMFA& CoMSIA

  • Kwack, In-Young;Kim, Chan-Kyung;Hyun, Kwan-Hoon;Lee, Bon-Su;Park, Hyung-Yeon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.186.3-186.3
    • /
    • 2003
  • The three-dimensional quantitative structure-activity relationship (3D-QSAR) study using the comparative molecular field analysis (CoMFA) was performed on indolinones derivatives as an inhibitor of the protein tyrosine kinase of fibroblast growth factor receptor (FGFR). In the training set, twenty-four indolinone derivatives were aligned based on the indole fragment and the steric and electrostatic fields were included in the analysis. The best predicted model showed the cross-validated coefficient (r$^2$$\sub$cv/) of 0.804 and bib-cross validated coefficient (r$^2$) of 0.942. The CoMFA study can be used to predict several new inhibitors of the FGFR.

  • PDF

Tyrosine kinase inhibitors reverse lawsone methyl ether stimulation of renal dipeptidase release but not of alkaline phosphatase release.

  • Park, Eun-Mi;Yoon, Hyun-Joong;Park, Haeng-Soon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.322.1-322.1
    • /
    • 2002
  • Lawsone methyl ether (LME. 2-methoxy-1, 4-naphthoquinone) is a natural compound found in balsaminaceae. In this study the effect of LME on the release of renal dipeptidase (RDPase) and alkaline phosphatase (APase) known as glycosylphosphatidylinositol (GPI) anchored proteins was examined from the renal proximal tubules. Compared with control, LME (0.5mM) increased RDPase release (218%) and APase release (135%). The increase of RDPase release by LME showed concentration-dependent effect but the release pattern of APase did not. (omitted)

  • PDF

Effects of Serum on Nitric Oxide Production in Embryonic Mouse Liver Cell Line BNL CL.2 (혈청이 마우스 간 세포주 BNL CL.2의 Nitric Oxide 생성에 미치는 영향)

  • 김유현;김신무;배현옥;유지창;정헌택;진효상
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Nitric oxide (NO) plays an important role in immunologic defense, and influences upon the functioning of secretory tissues and cells. It also exhibits cytotoxic/cytostatic activity as one of major operating effectors of the cellular immunity system. We investigated the effects of serum on the cell damages and NO production in the mouse liver cell line BNL CL.2 to establish the role of NO. We observed that, when BNL CL.2 cells were cultured in serum-free medium, they were induced to cell damage by the stimulation of IFN-$\gamma$ alone or IFN-$\gamma$ plus LPS. Serum-starved cells showed large amount of nitrite accumulation and NO synthase (NOS) expression in response to IFN-$\gamma$ alone in dose- and time- dependent manners, but serum-supplied cells did not The production of NO was blocked by protein tyrosine kinase (PTK) inhibitors, genistein and herbimycin. These results suggest that the deprivation of serum in the BNL CL.2 cell culture medium might primed with the cells to produce NO when the cells are triggered by IFN-$\gamma$ and the involvement of PTK signal transduction pathway in the expression of NOS gene in murine hepatocytes.

  • PDF