• Title/Summary/Keyword: Typical Meteorological Data

Search Result 101, Processing Time 0.027 seconds

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

An Analysis of Optimal Installation Condition and Maximum Power Generation of Photovoltaic Systems Applying Perez Model (Perez Model을 적용한 태양광 시스템 별 최적 설치 조건 및 최대 발전량 분석)

  • Lee, Jay-Dy;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • Photovoltaic(PV) system is one of power generation systems. Solar light in PV system is like the fuel of the car. The quantity of electricity generation, therefore, is fully dependent on the available quantity of solar light on the system of each site. If a utility can predict the solar power generation on a planned site, it may be possible to set up an appropriate PV system there. It may be also possible to objectively evaluate the performances of existing solar systems. Based on the theories of astronomy and meteorology, in this paper, Perez model is simulated to estimate the available quantity of solar lights on the prevailed photovoltaic systems. Consequently the conditions for optimal power generation of each PV system can be analyzed. And the maximum quantity of power generation of each system can be also estimated by applying assumed efficiency of PV system. Perez model is simulated in this paper, and the result is compared with the data of the same model of Meteonorm. Simulated site is Daejeon, Korea with typical meteorological year(TMY) data of 1991~2010.

Infiltration in Residential Buildings under Uncertainty (공동주택 침기의 불확실성 분석)

  • Hyun, Se-Hoon;Park, Cheol-Soo;Moon, Hyeun-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.369-374
    • /
    • 2006
  • Quantification of infiltration rate is an important issue in HVAC system design. The infiltration in buildings depends on many uncertain parameters that vary with significant magnitude and hence, the results from standard deterministic simulation approach can be unreliable. The authors utilize uncertainty analysis In predicting the airflow rates. The paper presents relevant uncertain parameters such as meteorological data, building parameters (leakage areas of windows, doors, etc.), etc. Uncertainties of the aforementioned parameters are quantified based on available data from literature. Then, the Latin Hypercube Sampling (LHS) method was used for the uncertainty propagation. The LHS is one of the Monte Carlo simulation techniques that is suited for our needs. The CONTAMW was chosen to simulate infiltration phenomena in a residential apartment that is typical of residential buildings in Korea. It will be shown that the uncertainty propagating through this process is not negligible and may significantly influence the prediction of the airflow rates.

  • PDF

Analysis of Optical Characteristic Near the Cloud Base of Before Precipitation Over the Yeongdong Region in Winter (영동지역 겨울철 스캔라이다로 관측된 강수 이전 운저 인근 수상체의 광학 특성 분석)

  • Nam, Hyoung-Gu;Kim, Yoo-Jun;Kim, Seon-Jeong;Lee, Jin-Hwa;Kim, Geon-Tea;An, Bo-Yeong;Shim, Jae-Kwan;Jeon, Gye-hak;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.237-248
    • /
    • 2018
  • The vertical distribution of hydrometeor before precipitation near the cloud base has been analyzed using a scanning lidar, rawinsonde data, and Cloud-Resolving Storm Simulator (CReSS). This study mostly focuses on 13 Desember 2016 only. The typical synoptic pattern of lake-effect snowstorm induced easterly in the Yeongdong region. Clouds generated due to high temperature difference between 850 hPa and sea surface (SST) penentrated in the Yeongdong region along with northerly and northeasterly, which eventually resulted precipitation. The cloud base height before the precipitation changed from 750 m to 1,280 m, which was in agreement with that from ceilometer at Sokcho. However, ceilometer tended to detect the cloud base 50 m ~ 100 m below strong signal of lidar backscattering coefficient. As a result, the depolarization ratio increased vertically while the backscattering coefficient decreased about 1,010 m~1,200 m above the ground. Lidar signal might be interpreted to be attenuated with the penetration depth of the cloud layer with of nonspherical hydrometeor (snow, ice cloud). An increase in backscattering signal and a decrease in depolarization ratio occured in the layer of 800 to 1,010 m, probably being associated with an increase in non-spherical particles. There seemed to be a shallow liquid layer with a low depolarization ratio (<0.1) in the layer of 850~900 m. As the altitude increases in the 680 m~850 m, the backscattering coefficient and depolarization ratio increase at the same time. In this range of height, the maximum value (0.6) is displayed. Such a result can be inferred that the nonspherical hydrometeor are distributed by a low density. At this time, the depolarization ratio and the backscattering coefficient did not increase under observed melting layer of 680 m. The lidar has a disadvantage that it is difficult for its beam to penetrate deep into clouds due to attenuation problem. However it is promising to distinguish hydrometeor morphology by utilizing the depolarization ratio and the backscattering coefficient, since its vertical high resolution (2.5 m) enable us to analyze detailed cloud microphysics. It would contribute to understanding cloud microphysics of cold clouds and snowfall when remote sensings including lidar, radar, and in-situ measurements could be timely utilized altogether.

Analyses of factors that affect PM10 level of Seoul focusing on meteorological factors and long range transferred carbon monooxide (서울시 미세먼지 농도에 영향을 미치는 요인 분석 : 기상 요인 및 장거리 이동 물질 중 일산화탄소를 중심으로)

  • Park, A.K.;Heo, J.B.;Kim, H.
    • Particle and aerosol research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 2011
  • The objective of the study was to investigate the main factors that contribute the variation of $PM_{10}$ concentration of Seoul and to quantify their effects using generalized additive model (GAM). The analysis was performed with 3 year air pollution data (2004~2006) measured at 27 urban sites and 7 roadside sites in Seoul, a background site in Gangwha and a rural site in Pocheon. The diurnal variation of urban $PM_{10}$ concentrations of Seoul showed a typical bimodal pattern with the same peak times as that of roadside, and the maximum difference of $PM_{10}$ level between urban and roadside was about $14{\mu}g/m^{3}$ at 10 in the morning. The wind direction was found to be a major factor that affects $PM_{10}$ level in all investigated areas. The overall $PM_{10}$ level was reduced when air came from east, but background $PM_{10}$ level in Gangwha was rather higher than the urban $PM_{10}$ level in Seoul, indicating that the $PM_{10}$ level in Gangwha is considerably influenced by that in Seoul metropolitan area. When hourly variations of $PM_{10}$ were analyzed using GAM, wind direction and speed explained about 34% of the variance in the model where the variables were added as a 2-dimensional smoothing function. In addition, other variables, such as diurnal variation, difference of concentrations between roadside and urban area, precipitation, month, and the regression slope of a plot of carbon monooxide versus $PM_{10}$, were found to be major explanatory variables, explaining about 64% of total variance of hourly variations of $PM_{10}$ in Seoul.

Characteristics of Surface and Synoptic Meteorology During High-Ozone Episodes in the Greater Seoul Area (서울.수도권 지역 고농도 오존 사례의 지상 및 종관 기상 특성)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.441-455
    • /
    • 1999
  • Meteorological characteristics of three high-ozone episodes in the Greater Seoul Area, selected on the basis of morning-average wind direction and speed for the 1990~1997 period, were investigated. Three high-ozone episodes thus selected were seven days of July 3~9, 1992, nine days of July 21~29, 1994, and three days of August 22~24, 1994. Along with surface meteorological data from the Seoul Weather Station, surface and 850-hPa wind fields over the Northest Asia around the Korean Peninsula were used for the analysis. In the July 1992 episode, westerly winds were most frequent as a result of the influence of a high-pressure system in the west behind the trough. In contrast, in the July 1994 episode, easterly winds were most frequent due to the effect of a typhoon moving north from the south of Japan. Despite different prevailing wind directions in the two episodes, the peak ozone concentration of each episode always occurred when a sea-land breeze developed in association with weak synoptic forcing. The August 1994 episode, selected as being representative of calm conditions, was another typical example in which peak ozone concentration rose to 322 ppb under the well-developed sea-land breeze. All three high-ozone episodes were terminated by precipitation, and subsequent rises in ozone concentrations were also suppressed by a series of precipitation afterwards. In particular, two heavy rainfalls were the main reason why the August 1994 episode, with the highest and second-highest ozone concentrations during the 1990~1997 period, lasted for only a few days.

  • PDF

Influence of Surface Heterogeneity on Turbulent Transfer in the Surface Layer (지표면의 비균질성이 지표층의 난류수송에 미치는 영향)

  • Hong, Seon-Ok;Lee, Young-Hee;Lim, Yoon-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.317-329
    • /
    • 2014
  • Eddy covariance data have been analyzed to investigate the influence of surface heterogeneity on turbulent transfer over farmland and industrial sites near Nakdong river, Korea, where both large and small scale heterogeneities co-exist. For this purpose, basic turbulent statistics, quadrant analysis and multi-resolution decomposition have been analyzed during the daytime. Basic turbulent statistics were compared with typical turbulent statistics in the surface layer. Such comparisons were in close agreement for momentum and heat at both sites but not for water vapor at industrial site. The correlation coefficient between water vapor and vertical velocity ($r_{wq}$) is relatively low and skewness of water vapor ($sk_q$) is very low at industrial site, possibly due to limited water source. For heat at both sites and water vapor at farmland, the quadrant analysis show similar behavior to that over homogeneous site but for water vapor at industrial site, the presence of river and limited water source at industrial site seems to influence on water vapor transfer by coherent eddy motion by increasing sweep contribution and decreasing ejection contribution. Multi-resolution decomposition analysis shows that large scale heterogeneity leads to low $r_{Tq}$ at large averaging time regardless of season at both sites and there are seasonal changes of $r_{Tq}$ in mid-averaging times at industrial site, possibly due to seasonal change of trees and grasses near the site.

The Study on the Characteristics of the Horizontal Solar Irradiance Measured at 18 Regions during 2005 to 2014 and on the Analytical Method (2005년부터 2014년까지 전국 18개 지역의 측정 수평면전일사량의 경향 분석 및 분석 방법 소개)

  • Cho, Min-Cheol;Lim, Haeun;Kwak, Jae-eun;Kang, Jun-Mo;Hwang, Dong-Hyun;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.11-14
    • /
    • 2017
  • At present, the Korea Meteorological Administration (KMA) measures the horizontal solar irradiation with time in 33 areas. Among these measured data, this study analyzed the tendency of applying the new analysis method by using the horizontal solar irradiation with the time which was measured in 18 regions across the country for ten years from 2005 to 2014. The method applied to the analysis is to compare the value of the annual total horizontal solar irradiance for one year with the value of that for the previous year of each year, and give +1 when it is higher than the reference ratio, 0 if it is within the reference ratio, and -1 when it is lower than the reference ratio. The characteristics of each region and nationwide characteristics according to the change of each reference ratio were evaluated and analyzed. Through the analysis results, the analysis method applied in this study could be well describe the characteristics of the solar irradiance during some years.

Occurrence Characteristics of Sea Breeze in the Gangneung Region for 2009~2018 (강릉지역 2009~2018년 해풍 발생 특성)

  • Hwang, Hyewon;Eun, Seung-Hee;Kim, Byung-Gon;Park, Sang-Jong;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.221-236
    • /
    • 2020
  • The Gangneung region has the complicated geographical characteristics being adjacent to East Sea and Taeback mountains, and thus sea breeze could play an important role in local weather in various aspects. This study aims to understand overall characteristics of sea breeze largely based on long-term (2009~2018) ground-based observation data. We also propose a selection criteria of sea breeze occurrence day; 1) daily precipitation is less than 10 mm, 2) surface wind direction is 0~110° (northerly to easterly) for more than 3 hours during the daytime, 3) wind direction is 110~360° for more than 3 hours during the nighttime, and 4) land and sea temperature difference is positive during the daytime, 5) sea and land sea-level pressure difference is more than 0.5 hPa. As a result, a total of 595 days was selected for the past 10 years. The occurrence of sea breeze is the highest in late Spring to early Summer (May to June). The passage time of sea breeze at the inland station (1.6 km farther inland) is one hour later than the coastal station. On the typical sea breeze event of April 12, 2019, the passage speed and duration of sea breeze was 15 km hr-1 and about 9 hours, respectively, with its depth of about 500 m and its head swelling. The current results emphasize the critical role of sea breeze in forecasting surface temperature and wind, and contribute to relieve heat wave especially in summer in the Yeongdong region.

A Case Study of Tsukuba Tornado in Japan on 6 May 2012

  • Choo, Seonhee;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.39 no.5
    • /
    • pp.403-418
    • /
    • 2018
  • This study conducted synoptic and mesoscale analyses to understand the cause of Japan Tsukuba tornado development, which occurred at 0340 UTC 6 May 2012. Prior to the tornado occurrence, there was a circular jet stream over Japan, and the surface was moist due to overnight precipitation. The circular jet stream brought cold and dry air to the upper-level atmosphere which let strong solar radiation heat the ground with clearing of sky cover. A tornadic supercell developed in the area of potentially unstable atmosphere. Sounding data at Tateno showed a capping inversion at 900 hPa at 0000 UTC 6 May. Strong insolation in early morning hours and removal of the inversion instigated vigorous updraft with rotation due to vertical shear in the upper-level atmosphere. This caused multiple tornadoes to occur from 0220 to 0340 UTC 6 May 2012. When comparing Tateno's climatological temperature and dew-point temperature profile on the day of event, the mid-level atmosphere was moister than typical sounding in the region. This study showed that tornado development in Tsukuba was caused by a combination of (a) topography and potential vorticity anomaly, which increased vorticity over the Kanto Plain; (b) vertical shear, which produced horizontal vortex line; and c) thermal instability, which triggered supercell and tilted the vortex line in the vertical.