• Title/Summary/Keyword: Typhoon prevention

Search Result 102, Processing Time 0.026 seconds

Accuracy Improvement for Building Inundation Trace Map using Accurate DEM Data and Flood Damage Information (정밀지형자료와 과거 침수피해정보를 활용한 침수흔적도 구축 정확도 개선)

  • Goo, Sin-Hoi;Kim, Seong-Sam;Park, Young-Jin;Choi, Jae-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.91-99
    • /
    • 2011
  • With increasing astronomically damage costs caused by frequent and large-sized flood, a hazard map containing comprehensive analysis results such as inundation trace investigation, flood possibility analysis, and evacuation plan establishment for flooded regions is a fundamental measure of non-structural flood prevention. Though an inundation trace map containing flood investigation results occurred by typhoon, rainfall and tsunami is a basic hazard map having close relationship with a flood possibility map as well as a hazard information map, it is often impossible to be produced because of financial deficiency, time delay of investigation, and the lack of maintenance for flood traces. Therefore, this study proposes the accuracy enhancement procedure of inundation trace map with flood damage information and three-dimensional Digital Elevation Model (DEM) for the past frequent flooded regions according to a guideline for inundation trace map of National Emergency Management Agency (NEMA).

Flood inundation analysis resulting from two parallel reservoirs' failure (병렬로 위치한 2개 저수지 붕괴에 따른 홍수범람 해석)

  • Kim, Byunghyun;Han, Kun Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.121-132
    • /
    • 2016
  • The DAMBRK is applied to Janghyeon and Dongmak reservoirs in Namdaecheon basin, where two reservoirs were failed due to Typhoon Rusa in 2002. Relaxation scheme is added to DAMBRK to consider the tributary cross-section because two reservoirs are in tributary valleys. In addition, this study suggests the method to utilize the reservoir breach formation time of ASDSO (2005) and empirical formulas for peak break outflow from dam to reduce the uncertainty of reservoir breach formulation time. The single break of Janghyeon reservoir and consecutive break of Janghyeon and Dongmak reservoirs with the suggested method are considered. While the breach discharge from reservoirs rushes down, the discharge and water surface elevation along the river are predicted, and the predictions show the attenuation phenomena of reservoir break floodwave. The applicability of the model is validated by comparing the predicted height with field surveyed data, and showing good agreements between predictions and measurements.

A Method of Establishing the National Cyber Disaster Management System (국가 사이버재난관리 시스템 구축 방안)

  • Kim, Sang-Wook;Shin, Yong-Tae
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.351-362
    • /
    • 2010
  • In Korea, national information infrastructure has been grown well because of the rapid growth and supply of Internet, but threats of cyber terror and cyber war are also increasing. Cyber attacks on knowledge information society threaten industry, economy and security. Major countries realize that cyber attacks can cause national heavy loss. So, they are trying to adopt policy on their cyber safe. And natural environmental crisises are increasing around the world. Countries such as India and Philippine in which tsunami, typhoon and earthquake are often occurring have national systematic disaster management system that can prevent and recover. We need systematic management for prevention and recovery from cyber terror, and need to establish national cyber disaster management system. Therefore, in this paper, we analyze major countries's cyber security policy and suggest a method of establishing the national cyber disaster management system.

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar III. 2-D Flood Inundation Simulation (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 III. 2차원 홍수범람 모의)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Sang-Ho;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.347-362
    • /
    • 2006
  • In this study, a 2-D flood inundation model was developed to evaluate the impact of levee failure in a natural basin for flood analysis. The model was applied to analyze the inundation flow from the levee break of Gamcheon river during the typhoon Rusa on October 31 through September 1, 2002. To verify the simulated results, wide range field surveys have been performed including the collection of NGIS database, land use condition, flooded area, and flow depths. Velocity distributions and inundation depths were presented to demonstrate the robustness of the model. Model results have good agreements with the observed data in terms of flood level and flooded area. The model is able to compute maximum stage and peak discharge efficiently in channel and protected lowland. Methodology considering radar-rainfall estimation using cokriging scheme, flood-runoff and inundation analysis in this study will contribute to the establishment of the national integrated flood disaster prevention system and the river or protect lowland management system.

Remote Sensing of GPS Precipitable Water Vapor during 2014 Heavy Snowfall in Gangwon Province (2014년 강원 폭설동안 GPS 가강수량 탐측)

  • JinYong, Nam;DongSeob, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.305-316
    • /
    • 2015
  • The GPS signal delays in troposphere, which are along the signal path between a transmitting satellite and GPS permanent station, can be used to retrieve the precipitable water vapor. The GPS remote sensing technique of atmospheric water vapor is capable of monitoring typhoon and detecting long term water vapor for tracking of earth’s climate change. In this study, we analyzed GPS precipitable water vapor variations during the heavy snowstorm event occurred in the Yeongdong area, 2014. The results show that the snowfall event were occurring after the GPS precipitable water vapor were increased, the maximum fresh snow depth was recorded after the maximum GPS precipitable water vapor was generated, in Kangneug and Wuljin, respectively. Also, we analyzed that the closely correlation among the GPS precipitable water vapor, the K-index and total index which was acquired by the upper air observation system during this snowstorm event was revealed.

Design of FPGA-based Signal Processing of EWRG for Localized Heavy Rainfall Observation (국지성 호우 관측을 위한 FPGA 기반의 전파강수계 신호처리 설계)

  • Choi, Jeong-Ho;Lee, Bae-Kyu;Park, Hyeong-Sam;Park, Jeong-Min;Lim, Sang-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1215-1223
    • /
    • 2020
  • Recently, the number of natural disasters caused by inclement weather conditions such as localized heavy rainfall, Typhoon, etc. is increasing in Korea, which requires relevant prevention and water management measures. Rain gauges installed on the ground have strengths in continuously·directly measures ground precipitation but cannot provide accurate information on spatial precipitation distribution in the areas without the rain gauges. The present research has designed and developed an electromagnetic-based multi-purpose precipitation gauge(EWRG, Electromagnetic Wave Rain Gauge) that can measure rainfall at the real time, by overcoming spatial representativeness. In this paper, we propose an FPGA-based signal processing design method for EWRG. The signal processing of the EWRG was largely designed by calculating the ADC and DDC of the LFM waveform, pulse compression, correlation coefficient and estimating the precipitation parameter. In this study, the LFM waveform and pulse compressed signal were theoretically analyzed.

A Risk Evaluation Method of Slope Failure Due to Rainfall using a Digital Terrain Model (수치지형모델을 이용한 강우시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, JongGil;Jung, MinSu;Torii, Nobuyuki;Okimura, Takashi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.219-229
    • /
    • 2010
  • Slope failure in South Korea generally occurs by the localized heavy rain in a rainy season and typhoon, and it annually causes huge losses of both life and property because nearly 70% of territory in South Korea is covered with mountains. It is required to measure the risk of slope failure quantitatively before proper prevention methods are provided. However, there is no way to estimate the risk based on realtime rainfall, geological characteristics, and geotechnical engineering properties. This study presents the development of digital terrion model to predict slope stability using infinite slope stability theory combined with temporal groundwater change. Case studies were performed to investigate factors to affect slope stability in Japan.

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (II): Application and Analysis (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (II): 적용 및 분석)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.605-612
    • /
    • 2006
  • In this study(II), The developed rainfall forecast model was applied to the NakDong River Basin for the heavy rainfall on 6th to 16th of August in 2002. The results demonstrated that the rainfall forecasts of 3 hours lead time showed good agreement with observed data. The inundation aspect of simulation depends on actual levee failure in the same basin. Rainfall forecasts were used for flood amount computation in the target watershed. Also the flood amount in the target watershed was used on boundary condition for flood inundation simulation in a protected lowland and a river. The results of simulation are consistent with actuality inundation traces and flood level data of the target watershed. This study provides practical applicability of satellite data in rainfall forecast of extreme events such as heavy rainfall or typhoon. Also this study presented an advanced integrated model of rainfall, runoff, and inundation analysis which can be applicable for flood disaster prevention and mitigation.

Development of the 3D simulation for disaster prevention in the downtown soil erosion (I) (도심지 토사재해 예방을 위한 3차원 시뮬레이션 개발(I))

  • Shin, Bong Jin;Youn, Sang Ho;Lee, Gi Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.408-417
    • /
    • 2016
  • The frequent regional torrential or heavy rain and typhoon mostly caused by climate change has resulted in sediment disasters particularly in mountainous or hilly areas. More than 65% of South Korea is mountainous and development and rapid urbanization has brought lots of steep sloping industrial complexes, which are adjacent to cities. Such continuous urbanization and industrialization can result in an increase in serious damage to those places. Korea has very high population density so sediment disaster could result in a tremendous loss of property and life. A recent 10-year (2001~2010) study of the average annual loss shows 68 casualties and property loss of 1.7044 trillion Won(?), which indicates a 20% and 25% decrease for both life and property, respectively, but urban areas are experiencing increasing damage. In this paper, a comprehensive simulator composed by references, analyses, and the recent technologies was applied to visualize the scale of the damaged Woomyeon-san (Mt.) and verify the performance of the simulator.

Assessment of Soil Erosion and Sedimentation in Cheoncheon Basin Considering Hourly Rainfall (시강우를 고려한 천천유역의 토양침식 및 퇴적 평가)

  • Kim, Seongwon;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.5-17
    • /
    • 2020
  • In recent years, the frequency of heavy rainfall associated with high rainfall intensity has been continuously increasing due to the effects of climate change; and thus also causes an increase in watershed soil erosion. The existing estimation techniques, used for the prediction of soil erosion in Korea have limitations in predicting the: average soil erosion in watersheds, and the soil erosion associated with abnormal short-term rainfall events. Therefore, it is necessary to consider the characteristics of torrential rainfall, and utilize physics-based model to accurately determine the soil erosion characteristics of a watershed. In this study, the rainfall kinetic energy equation, in the form of power function, is proposed by applying the probability density function, to analyze the rainfall particle distribution. The distributed rainfall-erosion model, which utilizes the proposed rainfall kinetic energy equation, was utilized in this study to determine the soil erosion associated with various typhoon events that occurred at Cheoncheon watershed. As a result, the model efficiency parameters of the model for NSE and RMSE are 0.036 and 4.995 ppm, respectively. Therefore, the suggested soil erosion model, coupled with the proposed rainfall-energy estimation, shows accurate results in predicting soil erosion in a watershed due to short-term rainfall events.