• Title/Summary/Keyword: Typhoon damage

Search Result 284, Processing Time 0.027 seconds

Experimental study and FE analysis of tile roofs under simulated strong wind impact

  • Huang, Peng;Lin, Huatan;Hu, Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.75-87
    • /
    • 2018
  • A large number of low-rise buildings experienced serious roof covering failures under strong wind while few suffered structural damage. Clay and concrete tiles are two main kinds of roof covering. For the tile roof system, few researches were carried out based on Finite Element (FE) analysis due to the difficulty in the simulation of the interface between the tiles and the roof sheathing (the bonding materials, foam or mortar). In this paper, the FE analysis of a single clay or concrete tile with foam-set or mortar-set were built with the interface simulated by the equivalent nonlinear springs based on the mechanical uplift and displacement tests, and they were expanded into the whole roof. A detailed wind tunnel test was carried out at Tongji University to acquire the wind loads on these two kinds of roof tiles, and then the test data were fed into the FE analysis. For the purpose of validation and calibration, the results of FE analysis were compared with the full-scale performance ofthe tile roofs under simulated strong wind impact through one-of-a-kind Wall of Wind (WoW) apparatus at Florida International University. The results are consistent with the WoW test that the roof of concrete tiles with mortar-set provided the highest resistance, and the material defects or improper construction practices are the key factors to induce the roof tiles' failure. Meanwhile, the staggered setting of concrete tiles would help develop an interlocking mechanism between the tiles and increase their resistance.

Economical Feasibility of Cultivation under Structure Due to the Introduction of New and Renewable Energy -Comparative Analysis of Wood-Pellet, Geothermal Heat and Diesel- (신재생에너지 도입에 따른 시설재배의 경제성 분석 -목재팰릿, 지열과 경유의 비교분석을 중심으로-)

  • Kim, Hyung Woo;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.255-268
    • /
    • 2014
  • We are now currently facing serious climate changes such as super typhoon, flood, intense heat, severe cold, super hurricane, drought, desertification, destruction of ecosystem, marine pollution, reduction of food production, destruction of tropical forests, exhaustion of water resources, climate refugees, etc. All of the above mainly derive from greenhouse gas exhaustion. Such harmful consequence might directly affect mankind's sustainable development. If we keep using resources that emits greenhouse gases, the global temperature will rise about $3.2^{\circ}C$ by year 2050. In case of $3^{\circ}C$ rise in temperature, it will result in abnormal climate which will bring about severe property damage. Moreover, 20~50% of the ecosystem will become extinct. As Korea's economy increasingly expands, so do our energy consumption rises. And because of the consequences that can be driven by increasing rate of resource use, not just Korea itself, but also the whole world should seriously concern about greenhouse gases. Although agricultural division only takes up about 3.2% of total greenhouse gas emission, the ministry of Agriculture, Food and Rural Affairs are taking voluntary actions to gradually reduce $CO_2$ and so does each and every related organizations. In order to reduce $CO_2$, introduction of new and renewable energy in farm house warming is crucial. In other words, implementing wood-pellet boiler and geothermal heat boiler can largly reduce $CO_2$ emission compared to diesel boiler. More importantly, not only wood-pellet and geothermal heat is pollution-free but they also have economic advantages some-what. In this thesis, the economic advantage and sustainablity will be introduced and proved through comparing practical analysis of surveyed farm house under structure employing wood-pellet boiler and geothermal heat boiler with Agriculture-Economic Statistic of 2012 who uses diesel boiler.

Suitability Assessment for Flood Disaster Shelters of Jinju City (진주시 홍수재해용 대피소 적합성 평가)

  • Yoo, Hwan Hee;Son, Se Ryeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.91-99
    • /
    • 2012
  • Jinju city is operating by selecting 8 places as the flood inundation risk area and by designating shelters on this area targeting districts damaged by typhoon and heavy rain, in the past. This study selected the research area as Nabul district and Sangpyeong district where are located in the town and that has high population density out of districts with inundation risk. The network analysis of GIS was applied to the suitability assessment on location of shelter by calculating the moving speed and the arriving time after dividing it into children, general adults, and aged people in consideration of the evacuation condition in inundation disaster. As a result, it was indicated that optimal evacuation plan time for children and aged people exceeded in getting to the shelter because of evacuation time excess and that even general adults outrun the prescribed evacuation time in some districts. Accordingly, a problem for evacuation time was improved by additionally designating 1-2 shelters to existing shelters in Nabul and Sangpyeong districts. A countermeasure is needed to reduce life and property damage in disaster occurrence by implementing the evacuation warning and the age-based evacuation plan more specifically in the future.

Changes in Forest Disturbance Patterns from 1976 to 2005 in South Korea

  • Park, Pil Sun;Lee, Kyu Hwa;Jung, Mun Ho;Shin, Hanna;Jang, Woongsoon;Bae, Kikang;Lee, Jongkoo;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.593-601
    • /
    • 2009
  • Forest disturbances including forest fire, insect pests and diseases, landslides, and forest conversion from 1976 to 2005 were investigated to trace the changes of major forest disturbance agents and their characteristics over time in accordance with changes in natural and social environment in South Korea. While the damaged area by insect pests and diseases continuously decreased for the past 30 years, damaged areas by forest fire and landslide were fluctuating through years. The interval of large forest fires has become shorter with increased tree volume. The precipitation between January and April were significantly correlated with large fire occurrences as Pearson's correlation coefficient -0.400 (P=0.029). The composition of major insect pests and diseases damaging Korean forests has been changed continuously, and become more diversified. While damages by pine caterpillar (Dendrolimus spectabilis) and pine needle gall midge (Thecodiplosis japonensis) decreased, damage by introduced pests has been more serious recently. The change of precipitation pattern that brought more localized heavy rain or powerful typhoon resulted in the recent increase in landslide areas. The major land uses to induce forest conversion have been changed, reflecting the changes in industrial structure in South Korea as agriculture and mining in 1970s, mining and golf ranges classified in pasture in 1980s, and road and housing construction in 1990s and 2000s. Changes in forest disturbance patterns in South Korea show that a country's industrial development is jointly working with global warming on forest stand dynamics. Altering energy structure and land use pattern induced by industrial development accumulates forest volume and reforms microenvironments on forest floor, interacting with climate change, inducing shorter interval of large forest fire and changes in major species composition of forest insect pests and diseases.

Detection of Fallen Pear Bags caused by Natural Disaster (자연 재해로 인하여 낙과된 무채색 배 봉지 검출)

  • Choi, Doo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.153-158
    • /
    • 2016
  • A detection algorithm of fallen pear bags caused by natural disaster like heavy rain, typhoon, hurricane, etc. is presented in this paper. The algorithm is developed for the gray pear bags with printed characters which are widely used at pear farms at Sangju and Naju producing large quantity of pears for export. It sets a region of interest (ROI) at first and then eliminates the regions having chromatic color in ROI. Morphological operation and prior information are used to eliminate small noises and several unusual regions and finally the regions of fallen pear bags are remained. The remained regions are analyzed and counted to estimate the scale of damage. Test images are consisted of the images taken at pear farms of Sangju and Naju at 2014. Experimental result shows that the detection rate of pear bags is more than 90% and also the proposed system can be implemented in real-time using hand-held devices because of its simple and parallel architecture.

Analysis of Landslide and Debris flow Hazard Area using Probabilistic Method in GIS-based (GIS 기반 확률론적 기법을 이용한 산사태 및 토석류 위험지역 분석)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.

Study on Plans to Establish Disaster Safety Villages in Rural Areas by Focusing on Facilities and Spatial Projects (시설과 공간계획을 중심으로 한 농촌지역 재난안전마을 구축방안 연구)

  • O, Hyeji;Lee, Taegoo
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.261-272
    • /
    • 2016
  • The whole world has been damaged by dramatic increase of natural disasters such as localized torrential downpour, earthquake and drought, while suffering from climate changes caused by global warming. In Korea where the continental climate and oceanic one are crossed, the frequency and the size of damages are increased by stronger typhoons and localized torrential downpours and landslides, storms and floods. Therefore, this study analyzed damage cases and their causes and examined foreign plans to prevent natural disasters, by limiting to rural villages where serious damages occur due to typhoons and localized torrential downpours and measures and infra-structures against such disasters are poorly prepared. From the findings, it attempts to suggest some plans to establish disaster safety villages by abstracting plan factors applicable to rural areas in Korea, on the basis of facilities and spatial projects.

Case Study on the Analysis of Disaster Vulnerabilities (Focused on the Fire & Explosion in the N-Industrial Complex) (재난 취약성 분석에 관한 사례연구(N공단의 화재·폭발을 중심으로))

  • Ha, Kag Cheon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.94-100
    • /
    • 2021
  • In general, the industrial complex is a place where factories of various industries are concentrated. It is only as efficient as it is designed. However, the risks vary as there are various industries. These features are also associated with various types of disasters. The dangers of natural disasters such as a typhoon, flood, and earthquake, as well as fire and explosions, are also latent. Many of these risks can make stable production and business activities difficult, resulting in massive direct and indirect damage. In particular, decades after its establishment, the vulnerabilities increase even more as aging and small businesses are considered. In this sense, it is significant to assess the vulnerability of the industrial complex. Thus analysing fire and explosion hazards as stage 1 of the vulnerability evaluation for the major potential disasters for the industrial complex. First, fire vulnerabilities were analyzed quantitatively. It is displayed in blocks for each company. The assessment block status and the fire vulnerability rating status were conducted by applying the five-step criteria. Level A is the highest potential risk step and E is the lowest step. Level A was 11.8% in 20 blocks, level B was 22.5% in 38 blocks, level C was 25.4% in 43 blocks, level D was 26.0% in 44 blocks, and level E was 14.2% in 24 blocks. Levels A and B with high fire vulnerabilities were analyzed at 34.3%. Secondly, the vulnerability for an explosion was quantitatively analyzed. Explosive vulnerabilities were analyzed at 4.7% for level A with 8 blocks, 3.0% for level B with 5, 1.8% for level C with 3, 4.7% for level D with 8, and 85.8% for level E with 145. Levels A and B, which are highly vulnerable to explosions, were 7.7 %. Thirdly, the overall vulnerability can be assessed by adding disaster vulnerabilities to make future assessments. Moreover, it can also assist in efficient safety and disaster management by visually mapping quantified data. This will also be used for the integrated control center of the N-Industrial Complex, which is currently being installed.

Development of Children's Disaster Safety Education Application according to Situational Learning Theory - For Lower Elementary School Students (상황학습이론에 따른 아동 재난안전교육 애플리케이션 개발- 초등학생 저학년을 대상으로)

  • Gi-Rim Park;Hye-Jeong Ryu;Seong-Yong Ohm
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.811-816
    • /
    • 2023
  • With the emergence of a climate crisis, climate disasters have recently been clearly felt in Korea. In particular, the typhoon 'Hinnamno' in the summer of 2022 made many people feel a sense of crisis with its formidable power. In this situation, children are likely to suffer great damage even in small crises due to their lack of experience and ability to cope with disaster situations. In this paper, we introduce a disaster response learning application that supports children's disaster response training. Designed based on research results on situational learning theory and child disaster safety education, this system produces various episodes and trains them to encounter disaster situations. Children can participate in the episode by choosing options during the episode, which is reflected in the picture diary after the episode is completed. By providing information naturally in the picture diary, children can access how to cope with disaster situations. Through this system, children are expected to develop their judgment in disaster situations that they can encounter and have the ability to secure basic safety outside of adult help.

Evaluation of Wind load Safety for Single G-type Greenhouse Using Korean Design Standard (건축구조기준을 활용한 농가지도형 G형 비닐하우스의 풍하중 안전성 평가)

  • Lee, Woogeun;Shin, Kyungjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Plastic greenhouses are simple structures consisting of lightweight materials such as steel pipes and polyvinyl chloride. However, serious damage occurs due to heavy winds and typhoon every year. To prevent a collapse of structural members, the Ministry of Agriculture and Rural Development has distributed plans and specifications for disaster-resistant standards. Despite these efforts, more than 50% of greenhouses still do not satisfy the disaster-resistant standards. Among the greenhouses that do not meet these standards, 85% are single-span greenhouses proposed 20 years ago. Consequently, there is a need to evaluate the safety of wind loads for the single-span greenhouse. Unfortunately, there are no design specifications for the greenhouses under wind loads. Therefore, a Korean design standard (KDS) has been utilized. KDS is defined with reference to wind speeds occurring once every 500 years, raising concerns about potential overdesign when considering the durability of plastic greenhouses. To address this, the modified wind load, considering the durability of the plastic greenhouse, was calculated, and a safety evaluation was conducted for sigle G-type plastic greenhouse. It was observed that the moment acting on the windward surface was substantial, and there was a risk of the foundation being pulled out if the basic wind speed exceeded 32 m/s. In terms of the combination strength ratio, it was less than 1.0 only on the leeward side when the basic wind speed was 24 m/s and 26 m/s. However, in all other cases, it exceeded 1.0, indicating an unsafe condition and highlighting the necessity for reinforcement.