• Title/Summary/Keyword: Typhoon Damage

Search Result 286, Processing Time 0.028 seconds

Characteristics of Storm Surge by Forward Speed of Typhoon in the South Coast of Korea (태풍의 이동속도에 따른 한국 남해안 폭풍해일고의 특성)

  • Park, Young Hyun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.187-194
    • /
    • 2021
  • The damage caused by typhoons is gradually increasing due to the climate change recently. Hence, many studies have been conducted over a long period of time on various factors that determine the characteristics of storm surge, and most of relationships have been discovered. Because storm surge is complexly determined by various factors, it often show different results and draw different conclusions. For this reason, this study was conducted to understand the various characteristics of storm surge caused by changes in the forward speed of typhoons. This study was carried out with a numerical model, and the effect of forward speed could be analyzed by simplifying other factors as much as possible. When forward speed is increased, storm surges caused by typhoons tended to increase gradually. The storm surge showed a wide and gentle increase at a slow speed, but a narrow and steep one at a fast speed. In the case of the same forward speed, it was found that the storm surge was significantly influenced by the water depth of actual sea area. It was confirmed that the change in forward speed after passing Jeju Island did not significant affect on the storm surge in the south coast of Korea.

Numerical simulation of flood water level in a small mountain stream considering cross-section blocking and riverbed changes - A case study of Shingwangcheon stream in Pohang before and after Typhoon Hinnamnor flood (단면 폐색과 하상 변화를 고려한 산지 중소하천의 홍수위 수치모의 - 태풍 힌남노 전후의 포항 신광천을 사례로 -)

  • Lee, Chanjoo;Jang, Eun-kyung;Ahn, Sunggi;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.837-844
    • /
    • 2023
  • Small and medium-sized mountain rivers that flow through steep, confined valleys carry large amounts of coarse-grained sediment and woody debris during floods. It causes an increase in flood water level by aggrading the riverbed and the cross-section blockage due to driftwood accumulation during flooding. However, the existing flood level calculation in the river basic plan does not consider these changes. In this study, using the Typhoon Hinnamnor flood in September 2022 as an example, we performed numerical simulations using the HEC-RAS model, taking into account the blockage of a cross-section at the bridge and changes in riverbed elevation that occurred during floods, and analyzed the flood level to predict flood risk. This study's results show that flooding occurs if more than 30% of the cross-section is blocked. The rise of flood water levels corresponds to that of the riverbed due to sediment deposition. These results can be used as basic data to prevent and effectively manage flood damage and contribute to establishing flood defense measures that consider actual phenomena.

The Preliminary Analyses on Damage Types of Stone Hertage induced by Natural Hazard, Korea (석조문화재의 자연재해 피해양상 예비분석)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Kim, Jin-Kwan;Lee, Jin-Young;Kim, Min-Seok;Yi, Sang-Heon;Kim, Jeong-Chan;Nahm, Wook-Hyun;Yang, Yun-Sik
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • The severe damage of cultural heritages induced by natural hazards like heavy rain has been dramatically increased since 1990. The number of the repair works of stone heritage of 2005 was six times as many as those of 1986 year. Especially the ratio of the repair works of Gyeongsang Province and Jeolla Province stood 63% of those of all over the country. Since 1990, the typhoons usually struck the southern part of Korea and went northward. The heavy damage of stone heritages in two provinces was caused by them. We made a preliminary survey the stone heritages that exposed to the natural hazards on the basis of repair works of them and a field survey. The analysis results indicate that the natural hazards such as landslide and soil disaster of the stone heritages related to a sloping surface stood 58% of all kind of natural hazards. The reasons are caused by the 59 % of all the stone heritages distributed in a sloping surface resulted in natural hazards like landslide and soil disaster. The bases of stone heritages can be easily eroded by the surface water with high energy induced by heavy rainfall. Most of the stone heritages like Maebul were engraved on a natural rock wall(outcrop). But some of them engraved on rolling stones are very vulnerable in a change of a base condition caused by erosion and ground subsidence and they can be tilted or fell down. The distribution of the stone heritages vulnerable in natural hazard is related to that of the rainfall distribution compounded five typhoons after 1990. Most of them are included in level two on the rainfall distribution map except those of Taean peninsula and some of Gyeonggi Province. They seem to be rather related to the rainfall distribution of the Typhoon Olga.

  • PDF

Future Inundation Characteristics Analysis for the Cheongmi Stream Watershed Considering Non-stationarity of Precipitation (강우의 비정상성을 고려한 청미천 유역의 미래 침수특성 분석)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Jun, Sang Min;Park, Jihoon;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.81-96
    • /
    • 2017
  • Along with climate change, it is reported that the scale and the frequency of extreme climate events (e.g. heavy rain, typhoon, etc.) show unstable tendency of increase. In case of Korea, also, the frequency of heavy rainfall shows increasing tendency, thus causing natural disaster damage in downtown and agricultural areas by rainfall that exceeds the design criteria of hydraulic structures. In order to minimize natural disaster damage, it is necessary to analyze how extreme precipitation event changes under climate change. Therefore a new design criteria based on non-stationarity frequency analysis is needed to consider a tendency of future extreme precipitation event and to prepare countermeasures to climate change. And a quantitative and objective characteristic analysis could be a key to preparing countermeasures to climate change impact. In this study, non-stationarity frequency analysis was performed and inundation risk indices developed by 4 inundation characteristics (e.g. inundation area, inundation depth, inundation duration, and inundation radius) were assessed. The study results showed that future probable rainfall could exceed the existing design criteria of hydraulic structures (rivers of state: 100yr-200yr, river banks: 50yr-100yr) reaching over 500yr frequency probable rainfall of the past. Inundation characteristics showed higher value in the future compared to the past, especially in sections with tributary stream inflow. Also, the inundation risk indices were estimated as 0.14 for the past period of 1973-2015, and 0.25, 0.29, 1.27 for the future period of 2016-2040, 2041-2070, 2071-2100, respectively. The study findings are expected to be used as a basis to analyze future inundation damage and to establish management solutions for rivers with inundation risks.

A Simulation of a Small Mountainous Chachment in Gyeoungbuk Using the RAMMS Model (RAMMS 모형을 이용한 경북 소규모 산지 유역의 토석류 모의)

  • Hyung-Joon Chang;Ho-Jin Lee;Seong-Goo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In Korea, mountainous areas cover 60% of the land, leading to increased factors such as concentrated heavy rainfall and typhoons, which can result in debris flow and landslide. Despite the high risk of disasters like landslides and debris flow, there has been a tendency in most regions to focus more on post-damage recovery rather than preventing damage. Therefore, in this study, precise topographic data was constructed by conducting on-site surveys and drone measurements in areas where debris flow actually occurred, to analyze the risk zones for such events. The numerical analysis program RAMMS model was utilized to perform debris flow analysis on the areas prone to debris flow, and the actual distribution of debris flow was compared and analyzed to evaluate the applicability of the model. As a result, the debris flow generation area calculated by the RAMMS model was found to be 18% larger than the actual area, and the travel distance was estimated to be 10% smaller. However, the simulated shape of debris flow generation and the path of movement calculated by the model closely resembled the actual data. In the future, we aim to conduct additional research, including model verification suitable for domestic conditions and the selection of areas for damage prediction through debris flow analysis in unmeasured watersheds.

The Correlation between Stem Characteristics and Its Resistance to Hail Damage in Potato Cultivars (우박저항성과 관련된 감자품종의 줄기 특성)

  • Jin, Yong-Ik;Chang, Dong-Chil;Cho, Ji-Hong;Cho, Kwang-Soo;Im, Ju-Sung;Hong, Su-Young;Kim, Su-Jeong;Sohn, Whang-Bae;Manjulatha, Mekapogu;Park, Kyeong-Hun;Kim, Yul-Ho;Yoo, Hong-Seob;Jeong, Jin-Cheol;Chung, Ill-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • BACKGROUND: Recently, weather disasters such as hail and typhoon occur frequently. These threaten the stable cultivation of potatoes. It is very important to cultivate potatoes with stable under unexpected weather disasters. This study was performed to investigate the correlation between mophological characteristics of potato stem and its resistance to hail damage in different potato cultivars. METHODS AND RESULTS: Hail fall occurred for 8 minutes on May 31, 2012 in the field of Highland Agriculture Research Center located in Jinbu-myeon Gangwon-do. Potato crop grown in the field was affected by hail due to which the stems of potato were broken. The percentage of broken stem of potato was investigated as the level of damage by hail. To determine the difference in the ratio of broken stem among the potato cultivars, physical characteristics of potato stem such as diameter and hardness were measured. To evaluate recovery phase after hail damage, ground coverage and yield were measured. The percentage of broken stem of cv. Goun and cv. Saebong were 30%, 26%, respectively, whereas it was 5% in the cv. Atlantic. Damage by hail was the lowest in cv. Atlantic. Diameter of the stem was 15 mm in cv. Atlantic, 13 mm in cv. Goun and 11 mm in cv. Saebong. The hardness of potato cultivars was measured which was 74 N in cv. Atlantic. 71 N in cv. Goun and 59 N in cv. Saebong. The ground coverage in cv. Atlantic was 79%, which was the highest followed by 73% in cv. Saebong and 56% in cv. Goun. The yield of cv. Atlantic was monitored at 90 days after planting which was 40 MT/ha and that of cv. Saebong was 36 MT/ha, whereas in cv. Goun, it was 30 MT/ha which was the lowest. CONCLUSION: The ratio of broken stem in cv. Atlantic was the lowest compared to cultivars. In the physical characteristics of stem, cv. Atlantic was the highest in value of diameter and hardness. Based on these results, it was considered that cv. Atlantic was resistant to hail damage compared to other cultivars.

Estimation of the Moisture Maximizing Rate based on the Moisture Inflow Direction : A Case Study of Typhoon Rusa in Gangneung Region (수분유입방향을 고려한 강릉지역 태풍 루사의 수분최대화비 산정)

  • Kim, Moon-Hyun;Jung, Il-Won;Im, Eun-Soon;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.697-707
    • /
    • 2007
  • In this study, we estimated the PMP(Probable Maximum Precipitation) and its transition in case of the typhoon Rusa which happened the biggest damage of all typhoons in the Korea. Specially, we analysed the moisture maximizing rate under the consideration of meteorological condition based on the orographic property when it hits in Gangneung region. The PMP is calculated by the rate of the maximum persisting 12 hours 1000 hPa dew points and representative persisting 12 hours 1000 hPa dew point. The former is influenced by the moisture inflow regions. These regions are determined by the surface wind direction, 850 hPa moisture flux and streamline, which are the critically different aspects compared to that of previous study. The latter is calculated using statistics program (FARD2002) provided by NIDP(National Institute for Disaster Prevention). In this program, the dew point is calculated by reappearance period 50-year frequency analysis from 5% of the level of significant when probability distribution type is applied extreme type I (Gumbel distribution) and parameter estimation method is used the Moment method. So this study indicated for small basin$(3.76km^2)$ the difference the PMP through new method and through existing result of established storm transposition and DAD(Depth-Area-Duration). Consequently, the moisture maximizing rate is calculated in the moisture inflow regions determined by meteorological fields is higher $0.20{\sim}0.40$ range than that of previous study. And the precipitation is increased $16{\sim}31%$ when this rate is applied for calculation.

The Devices to Strengthen the Competitiveness of the Port of Busan Relating to the Change of Logistics Environment in North-East Asia (동북아 물류환경변화에 따른 부산항의 경쟁력 강화 방안)

  • Bae, Byeong-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.20 no.2
    • /
    • pp.131-149
    • /
    • 2004
  • With trend of container ships becoming larger and faster, the environment surrounding ports in North-East Asia is rapidly changing. Korea's largest port of Busan processed more than 10 million 20- feet equivalent containers in 2003, surpassing the 10-million TEU mark for the first time in its three decades of operation. However, the Port of Busan , the world's third-largest port in 2002, was eclipsed by Shanghai since July in 2003. The first massive strike of truckers crippled the Korea's logistics system in May and in September, the Port of Busan suffered from the second strike of truckers and damage by a powerful typhoon. By contrast, the port of Shenzhen in China increased its container-processing volume by 39.9 percent to 10.65 million TEU in 2003, and Shanghai, which passed Busan in terms of container volume in the middle of last year, further consolidated its position as the world's No. 3 port with an annual volume of 11.28 million TEU. After all, Busan recorded an annual container volume of 10.40 million TEU, slipping to fifth in rankings in 2003 and Busan's bid to become a Northeast Asian hub has suffered a further setback as these chinese ports overtook the port of Busan. But the port of Busan is located in the main trunk liking North America, Europe and South-East Asia. Once the project of Busan Newport is accomplished and the railway between South and North Korea is connected to TCR and TSR, the Port of Busan will have the most potential to become the international logistics center as the starting point of the land and sea routes encompassing all over the world.

  • PDF

Umyeon Mountain Debris Flow Movement Analysis Using Random Walk Model (Random Walk Model을 활용한 우면산 토석류 거동 분석)

  • Kim, Gihong;Won, Sangyeon;Mo, Sehwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.515-525
    • /
    • 2014
  • Recently, because of increasing in downpour and typhoon, which are caused by climate changes, those sedimentation disasters, such as landslide and debris flow, have become frequent. Those sedimentation disasters take place in natural slope. In order to predict debris flow damage range within wide area, the response model is more appropriate than numerical analysis. However, to make a prediction using Random Walk Model, the regional parameters is needed to be decided, since the regional environments conditions are not always same. This random Walk Model is a probability model with easy calculation method, and simplified slope factor. The objective of this study is to calculate the optimal parameters of Random Walk Model for Umyeon mountain in Seoul, where the large debris flow has occurred in 2011. Debris flow initiation zones and sedimentation zones were extracted through field survey, aerial photograph and visual reading of debris flow before and after its occurrence via LiDAR DEM.

Impact of Climate Change on An Urban Drainage System (기후변화가 도시배수시스템에 미치는 영향)

  • Kang, Na-Rae;Kim, Soo-Jun;Lee, Keon-Haeng;Kim, Duck-Gil;Kwak, Jae-Won;Noh, Hui-Sung;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.623-631
    • /
    • 2011
  • In recent decade, the occurrences of typhoon and severe storm events are increasing trend due to the climate change. And the intensity of natural disaster is more and more stronger and the loss of life and damage of property are also increasing. Therefore, this study tried to understand the impact of climate change on urban drainage system for prevention and control of natural disaster and for this, we selected Gyeyang-gu, Incheon city as a study area. We investigated the climate models and scenarios for the selection of proper model and scenario, then we estimated frequency based rainfall in hourly unit considering climate change. The XP-SWMM model was used to estimate the future flood discharge on urban drainage system using the estimated frequency based rainfall. As a result, we have known that the study area will be overflown in the future and so we may need prepare proper measures for the flood prevention and control.