• Title/Summary/Keyword: Type-1 Fuzzy Cascade Controller

Search Result 2, Processing Time 0.016 seconds

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Design of Optimized Interval Type-2 Fuzzy Controller and Its Application (최적 Interval Type-2 퍼지 제어기 설계 및 응용)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1624-1632
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized Interval Type-2 fuzzy controller. The fixed MF design of type-1 based FLC leads to the difficulty of rule-based control design for representing the linguistically uncertain expression. In the Type-2 FLC as the expanded type of Type-1 FLC, we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. Type-2 FLC has a robust characteristic in the unknown system with unspecific noise when compared with Type-1 FLC. Through computer simulation as well as practical experiment, we compare their performance by applying both the optimized Type-1 and Type-2 fuzzy cascade controllers to ball and beam system. To evaluate each controller performance, we consider controller characteristic parameters such as maximum overshoot, delay time, rise time, settling time and steady-state error.