• Title/Summary/Keyword: Two-wheel Driving Vehicle

Search Result 53, Processing Time 0.022 seconds

A Study on Improving Driving Stability System by Yaw Moment Control (요우모멘트를 통한 주행안정성 향상 제어 알고리즘에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.392-397
    • /
    • 2006
  • This paper proposed yaw moment control scheme using braking and active rear wheel steering for improving driving stability especially in high speed driving. Its characteristics the unified chassis control system of two equipment that 4WS(4 Wheel Steering) and ESP(Electronic Stability Program). in this study the performance of the vehicle was compared each equipment. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

The Study of Three-wheel with Active Tilt Control(ATC) Systems in Design - Concentrated on Three Wheel Motor Bike (틸팅시스템을 적용한 삼륜차량 디자인 연구 - 삼륜 스쿠터를 중심으로 -)

  • 곽용민;안철홍
    • Archives of design research
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 2003
  • In the latest date, vehicles are offered to the drivers, not only the skill for shifting but the pleasure for driving vehicles that are existing today can be a social problem because the amount of vehicles that are increasing give difficulty for the traffic facilities and parking expansion. these day 80% of four wheeled vehicle carriers single or double person the reducing car scale is an important thing about the financial good use resources of energy and the storage of environment. A solution for these problem is a new general idea vehicle development for one or two person to ride. For the sake of these reasons, first, the information is collected and analyzed about existing foreign countries production. Car external design is intended by mathematical modeling, simulation and model testing about frame system of new concept specially we would like to show three wheeled vehicle that has active tilt control(ATC) system. This car tilts actively by the center rotation wheel and frame when the vehicle turns.

  • PDF

A Self-Organizing Fuzzy Control Approach to the Driving Control of a Mobile Robot (자기구성 퍼지제어기를 이용한 이동로봇의 구동제어)

  • Bae, Kang-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.46-55
    • /
    • 2006
  • A robust motion controller based on self-organizing fuzzy control(SOFC) and feed-back tracking control technique is proposed for a two-wheel driven mobile robot. The feed-back control technique of the controller guarantees the robot follows a desired trajectory. The SOFC technique of the controller deals with unmodelled dynamics of the vehicle and uncertainties. The computer simulations are carried out to verify the tracking ability of the proposed controller with various driving situations. The results of the simulations reveal the effectiveness and stability of the proposed controller to compensate the unmodelled dynamics and uncertainties.

A Study on Modeling and Fault Diagnosis of Suspension Systems Using Neural Network (신경망을 이용한 현가시스템의 모델링 및 고장 진단에 관한 연구)

  • 이정호;박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.95-103
    • /
    • 2003
  • Driving safety of a vehicle is largely influenced by the damper and the tire. Developed in this research is a fault diagnosis algorithm for the two components so that the driver can be promptly informed when fault occurs in one or both of them. To this end, the damper and the tire were modeled using the neural network from their experimental data, and fault diagnosis was made using frequency responses of the damping force and the dynamic wheel force. The algorithm was tested via experiments, and it demonstrated successful diagnostic performance under various driving conditions.

Structural Design and Evaluation of Six-component Wheel Dynamometer (6축 휠 동력계의 구조설계 및 평가)

  • Kim, Man Gee;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • Wheel dynamometers are used to measure dynamic load that is conveyed from the road to a vehicle while driving. In this paper, two types of six-component wheel dynamometers utilizing shear deformation and bending deformation were designed and evaluated. Prior to designing the shear and bending type wheel dynamometers, the shear and bending deformation behaviors of the basic structure of the wheel dynamometer itself were analyzed using finite element analysis. Strain analysis was performed repeatedly in order to obtain a similar output sensing strain for each load component. The design was modified with a bridge circuit in order to minimize coupling strain. The results indicated that the shear type dynamometer was expected to obtain stable characteristics due to uniform strain distribution while the bending type dynamometer was expected to obtain high-quality sensitivity performance due to consistent output sensitivity.

A Study on Zero-Condition of ASAE for Estimating Slip-Traction Relationship of Off-Road Vehicles (오프로드차량의 슬립-견인력 관계의 평가에 사용되는 ASAE 제로조건에 관한 연구)

  • 박원엽;이규승;오만수;박준걸
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.501-512
    • /
    • 2002
  • Traction performance of off-road vehicles is estimated using slip-traction relationships Two zero condition accepted by ASAE have been used widely to obtain the slip-traction relationships of off-road vehicles. This study was carried out using the soil bin systems to investigate the characteristic of slip-traction curves obtained using two zero conditions defined by ASAE. which are driving and driven zero condition, and to present disadvantage of slip-traction relationship based on two zero conditions of ASAE. The results of this study are summarized as follows : 1. For the driving zero condition, the curve of slip-traction relationship shows some issues. The first question is that the slip is zero when the traction is zero. The second question is that the value of slip is smaller than that of corresponding real slip, as the rolling radius decreased f3r the setting zero condition with driving wheel. 2. For the driven zero condition. slip occurs when the traction is zero, which is more realistic results than driving zero condition. But when a zero condition is set, skid occurs and this result increased the rolling radius of tire and increased slip value f3r the specific traction value of whole slip range. This kind of trend was getting bigger as the soil is softer, or the tire inflation pressure is higher. 3. From the results of this study, it was found that slip-traction relationship obtained by two zero conditions of ASAE is not realistic in estimating the traction performance of off-road vehicles. And also slip-traction relationship obtained for the same experimental condition showed different result in accordance with chosen zero condition,

Effect of Motor Cues and Secondary Task Complexity on Driving Performance and Task Switching While Driving (운전 중 IVIS 조작 상황에서 Motor Cue와 과제의 난이도가 과제 전환과 운전 주행에 미치는 영향)

  • Ryoo, Eunhyun;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.29-42
    • /
    • 2018
  • As information technology is more actively incorporated into automobiles, the role of IVIS (In-Vehicle Infotainment System) is becoming increasingly important for providing convenience and entertainment for drivers. However, using the infotainment systems while driving requires task switching and attending to two visual resources simultaneously. We simulated a setting where participants have to drive while interacting with the infotainment system and examined how task difficulty and motor cues impact driver task-switching and driving performance, specifically whether the effects of motor cues differ depending on task difficulty. For the infotainment display, we used two types of number array depending on the congruency between the digit repetition and the chunking unit, while task difficulty was manipulated by the size of the touch-keys. Participants were instructed to dial two numbers on the screen while we recorded the dialing time, lateral position, inter-key press intervals, and steering wheel control. We found that dialing time and lateral position were affected by task difficulty, while the type of number array had no effect. However, the inter-key press intervals between chunked numbers and steering wheel movement both increased when participants had to use an incongruent number array, which indicates that, if number digits are repeated, chunking is ignored by the drivers. Our findings indicate that, in a dual-task condition, motor cues offset the effect of chunking and can effectively signal the timing for task switching.

Kinetic Energy Recovery System for Electric Vehicles (전기자동차용 기계적 에너지 회생장치)

  • Shin, Eung-Soo;Bang, Jae-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.440-445
    • /
    • 2011
  • This paper presents a new regenerative brake system of electric vehicles that employs a continuous variable transmission(CVT) and a flywheel. The developed device has advantages over existing regenerative brakes from a standpoint of reliability and versatility in actual driving conditions. The system consists of a CVT, two wheels, a flywheel, a coupling and auxiliary powertrain components. The CVT is designed as a combination of two cones and a roller, which causes the velocity difference between the wheel and the flywheel. The power flow of the flywheel system is controlled by the CVT roller and the coupling through step motors. A prototype has been developed and then its performance has been investigated for various operating conditions. Results show that the storage efficiency of the flywheel is much affected by the vehicle's velocity and it is reduced below 20% for high speed, as compared to the 25% efficiency for an ideal condition. The CVT is a primary factor for lowering the flywheel efficiencies due to large friction and slipping between the cone and the roller.

A Study on Cost Optimization of Preventive Maintenance for the Second Driving Devices for Korea Train Express (KTX 2차 구동장치에 대한 예방정비 비용의 최적화에 관한 연구)

  • Jung, Jin-Tae;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Although the second driving device of KTX, which consists of the wheel and the axle reduction gears unit, is a mechanically integrated structure, its preventive maintenance (PM) requires two separate intervals due to the different technical requirements. In particular, these subsystems perform attaching and detaching work simultaneously according to the maintenance directive. Therefore, to reduce the unnecessary amount of PM and high logistic availability of the train, it is important to optimize PM with regard to reliability-centered maintenance toward a cost-effective solution. In this study, fault tree analysis and reliability of the subsystems, considering the criticality of the components, were performed using the data derived from field data in maintenance. The cost optimization of the PM was derived from a genetic algorithm considering the target reliability and improvement factor. The cost optimization was derived from a maximum of the fitness function of the individual in generation. The optimal TBO of them using the genetic algorithm was 2.85x106 km, which is reduced to approximately 21% compared to the conventional method.

Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems (사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘)

  • Kang, Hyunwoo;Baek, Jang Woon;Han, Byung-Gil;Chung, Yoonsu
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.408-416
    • /
    • 2017
  • This paper proposes a real-time side-rear vehicle detection algorithm that detects vehicles quickly and accurately in blind spot areas when driving. The proposed algorithm uses a cascade classifier created by AdaBoost Learning using the MCT (modified census transformation) feature vector. Using this classifier, the smaller the detection window, the faster the processing speed of the MCT classifier, and the larger the detection window, the greater the accuracy of the MCT classifier. By considering these characteristics, the proposed algorithm uses two classifiers with different detection window sizes. The first classifier quickly generates candidates with a small detection window. The second classifier accurately verifies the generated candidates with a large detection window. Furthermore, the vehicle classifier and the wheel classifier are simultaneously used to effectively detect a vehicle entering the blind spot area, along with an adjacent vehicle in the blind spot area.