• 제목/요약/키워드: Two-step search

검색결과 154건 처리시간 0.024초

서브샘플링을 이용한 수정된 Two-Step 고속 움직임 예측 알고리즘 (A Modified Tow-Step Fast Motion Estimation With the Subsampling Method)

  • 김철중;채병조;오승준;정광수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (A)
    • /
    • pp.508-510
    • /
    • 2001
  • 동영상을 효율적으로 압축하기 위한 움직임백터 예측에 관한 많은 연구가 진행되어 왔다. 가장 일반적인 FBMA(Full search-based Block Matching Algorithm)는 화질은 좋지만 계량이 많기 때문에 실시간 인코딩을 요구하는 시스템에서 사용하는데 문제가 있다. 좋은 화질을 유지하면서 인코딩 속도를 해결하기 위한 많은 알고리즘들이 제안되어 왔지만 ASIC이나 소형 시스템에서 사용할 수 있는 방법이 계속 요구되고 있다. 본 논문에서는 계산량을 더욱 줄여 속도향상을 위한 방법인 TSWS(Two-Step search With Subsampling method) 제안하였다. TSWS는 블록정합알고리즘에 기반을 두고 있으며, 서브샘플링한 값으로 움직임 벡터를 찾는다. TSWS를 사용하였을 때 기존 방법들이 제공하는 주관적 화질이나 PSNR을 어느 정도 유지하면서도 속도를 20-30% 정도 개선시킬 수 있다.

향상된 유전알고리듬과 Simplex method을 이용한 다봉성 함수의 최적화 (Optimization of Multimodal Function Using An Enhanced Genetic Algorithm and Simplex Method)

  • 김영찬;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.587-592
    • /
    • 2000
  • The optimization method based on an enhanced genetic algorithms is proposed for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by simplex method in reconstructive search space. Two numerical examples are also presented in this paper to comparing with conventional methods.

  • PDF

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안 (An Enhanced Genetic Algorithm for Optimization of Multimodal Function)

  • 김영찬;양보석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.241-244
    • /
    • 2000
  • The optimization method based on an enhanced genetic algorithms is proposed for multimodal function optimization in this paper This method is consisted of two main steps. The first step is global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide resemblance between individuals and research optimum solutions by single point method in reconstructive research space. Two numerical examples are also presented in this paper to comparing with conventional methods.

  • PDF

부화소 움직임 추정을 위한 고속 탐색 기법 (A Fast Search Algorithm for Sub-Pixel Motion Estimation)

  • 박동균;조성현;조효문;이종화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.26-28
    • /
    • 2007
  • The motion estimation is the most important technique in the image compression of the video standards. In the case of next generation standards in the video codec as H.264, a high compression-efficiency can be also obtained by using a motion compensation. To obtain the accurate motion search, a motion estimation should be achieved up to 1/2 pixel and 1/4 pixel uiuts. To do this, the computational complexity is increased although the image compression rate is increased. Therefore, in this paper, we propose the advanced sub-pixel block matching algorithm to reduce the computational complexity by using a statistical characteristics of SAD(Sum of Absolute Difference). Generally, the probability of the minimum SAD values is high when searching point is in the distance 1 from the reference point. Thus, we reduced the searching area and then we can overcome the computational complexity problem. The main concept of proposed algorithm, which based on TSS(Three Step Search) method, first we find three minimum SAD points which is in integer distance unit, and then, in second step, the optimal point is in 1/2 pixel unit either between the most minimum SAD value point and the second minimum SAD point or between the most minimum SAD value point and the third minimum SAD point In third step, after finding the smallest SAD value between two SAD values on 1/2 pixel unit, the final optimized point is between the most minimum SAD value and the result value of the third step, in 1/2 pixel unit i.e., 1/4 pixel unit in totally. The conventional TSS method needs an eight.. search points in the sub-pixel steps in 1/2 pixel unit and also an eight search points in 1/4 pixel, to detect the optimal point. However, in proposed algorithm, only total five search points are needed. In the result. 23 % improvement of processing speed is obtained.

  • PDF

대용량 데이터베이스에서 다차원 인덱스를 사용한 효율적인 다단계 k-NN 검색 (Efficient Multi-Step k-NN Search Methods Using Multidimensional Indexes in Large Databases)

  • 이상훈;김범수;최미정;문양세
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.242-254
    • /
    • 2015
  • 본 논문에서는 다차원 인덱스 기반 다단계 k-NN 검색의 성능 향상 문제를 다룬다. 기존 다단계 k-NN 검색에서는 고차원 객체의 저차원 변환으로 인한 정보 손실로 k-NN 질의 결과 매우 큰 허용치(검색 범위)가 결정되어 범위 질의 결과로 많은 후보가 검색된다. 또한, 많은 후보는 후처리 과정에서 매우 많은 I/O 및 CPU 오버헤드를 발생시킨다. 본 논문에서는 이와 같은 고찰에 기반하여 범위 질의의 허용치를 줄여 후보 개수를 줄이고 이를 통해 성능을 향상시키는 방법을 제안한다. 먼저, k-NN 질의 결과로 결정된 허용치를 고차원 및 저차원 객체간 거리 비율로 강제 축소하여 범위 질의에 사용하는 허용치 축소 (근사적) 해결책을 제안한다. 다음으로, k-NN 질의 계수 k 대신 c k 를 사용하여 얻은 보다 타이트(tight)한 허용치로 범위 질의를 수행하는 계수 제어 (정확한) 해결책을 제안한다. 실제 객체 데이터를 사용하여 실험한 결과, 제안한 두 가지 해결책은 기존 다단계 k-NN 검색에 비해 후보 개수와 검색 시간 모두를 크게 향상시킨 것으로 나타났다.

Fast and Efficient Search Algorithm of Block Motion Estimation

  • Kim, Sang-Gyoo;Lee, Tae-Ho;Jung, Tae-Yeon;Kim, Duk-Gyoo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.885-888
    • /
    • 2000
  • Among the previous searching methods, there are the typical methods such as full search and three-step search, etc. Block motion estimation using exhaustive search is too computationally intensive. To apply in practice, recently proposed fast algorithms have been focused on reducing the computational complexity by limiting the number of searching points. According to the reduction of searching points, the quality performance is aggravated in those algorithms. In this paper, We present a fast and efficient search algorithm for block motion estimation that produces better quality performance and less computational time compared with a three-step search (TSS). Previously the proposed Two Step Search Algorithm (TWSS) by Fang-Hsuan Cheng and San-Nan sun is based on the ideas of dithering pattern for pixel decimation using a part of a block pixels for BMA (Block Matching Algorithm) and multi-candidate to compensate quality performance with several locations. This method has good quality performance at slow moving images, but has bad quality performance at fast moving images. To resolve this problem, the proposed algorithm in this paper considers spatial and temporal correlation using neighbor and previous blocks to improve quality performance. This performance uses neighbor motion vectors and previous motion vectors in addition, thus it needs more searching points. To compensate this weakness, the proposed algorithm uses statistical character of dithering matrix. The proposed algorithm is superior to TWSS in quality performance and has similar computational complexity

  • PDF

다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안 (An Enhanced Genetic Algorithm for Optimization of Multimodal)

  • 김영찬;양보석
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.373-378
    • /
    • 2001
  • 본 연구에서의 다봉성 함수의 최적화를 위한 향상된 유전알고리듬을 제안하였다. 이 방법은 2개의 주요 단계로 구성된다. 첫째 단계는 유전알고리듬과 함수인정기준을 이용한 전역탐색단계이다. 초기해 집단에 대한 개체군의 소속도를 함수인정기준에 따라 결정한다. 둘째 단계는 개체군과 탐색최적해 사이의 유사도를 결정하고, 재구성된 탐색공간에서 단일점 탐색법에 의해 최적해를 탐색한다. 4개의 시험함수를 이용한 수치 예에 대해 종래의 방법과의 비교를 통하여 제안된 알고리듬이 모든 전역최적해 뿐만 아니라 국부최적해도 탐색이 가능함을 확인하였다.

  • PDF

A Study on a Compensation of Decoded Video Quality and an Enhancement of Encoding Speed

  • Sir, Jaechul;Yoon, Sungkyu;Lim, Younghwan
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제6권3호
    • /
    • pp.35-40
    • /
    • 2000
  • There are two problems in H.26X compression technique. One is compressing time in encoding process and the other is degradation of the decoded video quality due to high compression rate. For transferring moving pictures in real-time, it is required to adopt massively high compression. In this case, there are a lot of losses of an original video data and that results in degradation of quality. Especially degradation called by blocking artifact may be produced. The blocking artifact effect is produced by DCT-based coding techniques because they operate without considering correlation between pixels in block boundaries. So it represents discontinuity between adjacent blocks. This paper describes methods of quality compensation for H.26x decoded data and enhancing encoding speed for real-time operation. Our goal of the quality compensation is not to make the decoded video identical to a original video but to make it perceived better through human eyes. We suggest an algorithm that reduces block artifact and clears decoded video in decoder. To enhance encoding speed, we adopt new four-step search algorithm. As shown in the experimental result, the quality compensation provides better video quality because of reducing blocking artifact. And then new four-step search algorithm with $MMX^{TM}$ implementation improves encoding speed from 2.5 fps to 17 fps.

  • PDF

Truss structure damage identification using residual force vector and genetic algorithm

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.485-496
    • /
    • 2017
  • In this paper, damage detection has been introduced as an optimization problem and a two-step method has been proposed that can detect the location and severity of damage in truss structures precisely and reduce the volume of computations considerably. In the first step, using the residual force vector concept, the suspected damaged members are detected which will result in a reduction in the number of variables and hence a decrease in the search space dimensions. In the second step, the precise location and severity of damage in the members are identified using the genetic algorithm and the results of the first step. Considering the reduced search space, the algorithm can find the optimal points (i.e. the solution for the damage detection problem) with less computation cost. In this step, the Efficient Correlation Based Index (ECBI), that considers the structure's first few frequencies in both damaged and healthy states, is used as the objective function and some examples have been provided to check the efficiency of the proposed method; results have shown that the method is innovatively capable of detecting damage in truss structures.