• Title/Summary/Keyword: Two-step aging

Search Result 43, Processing Time 0.022 seconds

Effects of Two-Step Aging Treatment on the Mechanical Properties of 6061 Al Alloy (A 6061 합금의 기계적 특성에 미치는 2단시효의 영향)

  • Lee, Bo-Bae;Im, Hang-Joon;Jeong, Geol-Chae.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.57-60
    • /
    • 2019
  • The impact of two-step treatment on the mechanical properties of the 6061 Al alloy was investigated by testing the hardness and electrical conductance values. After two-step aging treatment, the hardness and electrical conductivity of the alloy was increased, and if the first aging treatment temperature was lower than the secondary aging treatment temperature, both the hardness and the electrical conductivity were not increased. The higher the temperature of the first aging treatment, the higher the hardness. The temperature of the first aging treatment is $175^{\circ}C$, $150^{\circ}C$, $120^{\circ}C$, and the second is $175^{\circ}C$ and $120^{\circ}C$.

Selective Dissolution of ZnO Crystal by a Two-step Thermal Aging in Aqueous Solution (수용액 합성법의 2단계 성장온도 변화를 통한 ZnO 결정의 선택적 용해 현상)

  • Kim, Jeong-Seog;Chae, Ki-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.263-268
    • /
    • 2011
  • ZnO hexagonal rods grown in aqueous solution can be changed into a tubular shape by two-step aging in the course of the growing process. In the first step, hexagonal ZnO rods is grown by aging at $90^{\circ}C$ under a highly supersaturated aqueous solution giving rise to a fast precipitation rate. Meanwhile, during the second step aging at $60^{\circ}C$ in the same aqueous solution, the hexagonal polar face (001) having higher surface energy than (010) side planes dissolves to minimize surface energy. Hence the flat (001) face changes to a craterlike face and the hexagonal rod length of ZnO decreases at an initial-stage of this step aging. The formation of the (101) wedge-type faces is ascribed to the resultant of competitive reactions between the dissolution of polar face minimizing the surface energy which is a dominant reaction at the initial stage and the precipitation reaction dissipating supersaturation. At a later stage of the second-step the reaction rates of these two processes in the aqueous solution become similar and the overall reaction is terminated.

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(III) - The Effect of Homogenizing and Aging on the Microstructures and Mechanical Properties - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(III) - 미세조직 및 기계적 성질에 미치는 균질화처리 및 시효처리의 영향 -)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.78-84
    • /
    • 2003
  • The changes of microstructure and hardness of TLP bonds of directionally solidified Ni base superalloy, GTD-111, with variation of homogenizing and aging treatment were investigated. The specimens were bonded at 1403K for 7.2ks using different insert metals such as MBF-50, MBF-80 and MBF-90 and they were homogenized at 1393K with various holding time. At center of bonded interlayer homogenized for hold time 30h, the contents of aluminum and titanium were approximately 90% and 95% of base metal, respectively. In this study, aging was performed at three different kinds : one step aging ; 1113K $\times$ 16h, two step aging ; 1113K $\times$ 10h ⇒ 1103K $\times$ 10h, three step aging ; 1113K $\times$ 10h ⇒ 1103K $\times$ 8h ⇒ 922K $\times$ 24h. ${\gamma}$' volume fraction and hardness of joints were high in the sequence of one step, two step and three step aging, whereas ${\gamma}$' volume fraction and hardness of joints obtained by three step aging treatment were higher than those of raw material. Tensile properties of joints bonded with MBF-80 and MBF-90, homogenized at 1393K for 30h and then three step aged became excellent than those of raw material, however, joint bonded with MBF-50 was poor.

Synthesis of FAU(Faujasite)-type Zeolite with Variation of Synthesis Condition (합성조건의 변화에 따른 FAU(Faujasite)형 제올라이트의 합성)

  • 임형미;김봉영;남중희;안병길;오성근;정상진
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.132-138
    • /
    • 2003
  • The effect of synthesis condition, type of starting materials, mole ratio, mixing. aging, and crystallization temperature and time, on the size of FAU-type zeolite has been studied. Different mixing route may lead to the different phase of zeolite even with the same starting materials. In general, the size of particles is smaller after aging, especially at lower aging temperature. Two step mixture gel preparation method resulted to not only the reduction of crystallization time but also that of particle size, but without the aging of two mixture gels before the preparation of the overall gel in the second step, only the crystallization time was reduced, not the particle size. The FAU-type zeolite with average particle size 0.4$\mu$m and BET surface area 838 $m^2$/g was obtained from starting materials of liquid sodium silicate, sodium aluminate, and sodium hydroxide with two step preparation of mixture gel, aging of the mixture gels in two steps, which effectively reduced the crystallization time and particle size.

Effect of Two-Step Aging Treatment on the Stress Corossion Cracking Resistance of 7050 Al Alloy (7050 Al합금의 응력부식저항성에 미치는 2단 시효처리의 영향)

  • Choe, Jung-Hwan;Kim, Jong-Gi;Kim, Heon-Gyu;Lee, Sang-Rae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.695-700
    • /
    • 1999
  • Effects of two-step aging treatment on the stress corrosion cracking(SCC) resistance of 7050 Al alloy were investigated by transmission electron microscopy, electrical conductivity measurement and stress corrosion facter(SCF) evaluation. It was found that η', principal hardening phase, transformed to η during over aging above maximum hardness, and SCC resistance was improved by increasing of the size and interspacing of η particles in matrix and grain boundary. The electrical conductivity increased with aging time, but SCF decreased due to the decrease of yield strength. This results mean increase of SCC resistance The optimum two-step aging condition in forged 7050 Al alloy was to be first aged at $120^{\circ}C$ for 6h and then finally aged at $175^{\circ}C$ for 12h.

  • PDF

Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy (극저온 열처리 공정이 6061 알루미늄 합금의 잔류응력과 인장특성에 미치는 영향)

  • Park, Kijung;Ko, Dea Hoon;Kim, Byung Min;Lim, Hak Jin;Lee, Jung Min;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.

Breakdown Characteristics and Lifetime Estimation of Rubber Insulating Gloves Using Statistical Models

  • Kim, Doo Hyun;Kang, Dong Kyu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • This paper is aimed at predicting the life of rubber insulating gloves under normal operating stresses from relatively rapid test performed at higher stresses. Specimens of rubber insulating gloves are subject to multiple stress conditions, i.e. combined electrical and thermal stresses. Two modes of electrical stress, step voltage stress and constant voltage stress are used in specimen aging. There are two types of test for electrical stress in this experiment: the one is Breakdown Voltage (BDV) test under step voltage stress and thermal stress and the other is lifetime test under constant voltage stress and temperature stress. The ac breakdown voltage defined as the break-down point of insulation that leakage current excesses a limit value, l0mA in this experiment, is determined. Because the very high variability of aging data requires the application of statistical model, Weibull distribution is used to represent the failure times as the straight line on Weibull probability paper. Weibull parameters are deter-mined by three statistical methods i.e. maximum likelihood method, graphical method and least squares method, which employ SAS package, Weibull probability paper and FORTRAN, respectively. Two chosen models for predicting the life under simultaneous electrical and thermal stresses are inverse power model and exponential model. And the constants of life equation for multistress aging are calculated using numerical method, such as Gauss Jordan method etc.. The completion of life equation enables to estimate the life at normal stress based on the data collected from accelerated aging test. Also the comparison of the calculated lifetimes between the inverse power model and the exponential model is carried out. And the lifetimes calculated by three statistical methods with lower voltage than test voltage are compared. The results obtained from the suggested experimental method are presented and discussed.

Aging Characteristics of 7xxx Series Al Composites with Al2O3 (Al2O3 첨가에 따른 7xxx계 알루미늄 소결체의 시효특성 변화)

  • Min Kyung-Ho;Park Kwang-Hyun;Seo Young-Ik;Chang Si-Young;Kim Young-Do
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.172-177
    • /
    • 2006
  • Aging characteristics and mechanical properties of commercial 7xxx series Al composites were investigated from viewpoint of ceramic contents. After sintering process, sintered densities of blended and composite powder were 95 and 97%, respectively. Each part was solution-treated at $475^{\circ}C$ for 60 min and aged $175^{\circ}C$. And two-step aging was also performed form $120^{\circ}C$ to $175^{\circ}C$. The aging behavior of the sintered composite pow-der was different from that of sintered blended powder. The peak aging time of the composite was rapid as well due to strain. Before aging, mechanical properties of sintered composite powder was significantly higher than that of sintered blended powder. These increments of properties were directly affected by ceramic particles. However, after aging, incremental rate of mechanical properties was slowed in the composite.

The Effect of Ageing on the Transformation Behavior of $Ti-50.1at\%$ Ni Alloy(I) ($Ti-50.1at\%$ Ni합금의 변태거동에 미치는 시효처리의 영향(I))

  • Woo Heung-Sik;Park Sung-Bum;Kang Bong-Su;Kim Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.1-7
    • /
    • 2004
  • This study investigated the effects of aging on the transformation behavior of $Ti-50.1at\%$ Ni alloy by means of differential scanning calorimetry. It was found that aging in the temperature range of $350^{\circ}C\~550^{\circ}C$ induced complex transformation behavior, involving the R-phase and multiple-stage martensitic transformation. Usually aged Ni-rich NiTi alloys undergo martensitic transformation on cooling from high temperatures in two step : B2 to R and then R to Bl9'(normal behavior). But under certain ageing conditions, the transformation can also occur in three or more step(unusual multiple step behavior). In the present study we use differential seaming calorimetry(DSC) for a systematic investigation of the evolution of transformation behavior with ageing temperature and time.