• Title/Summary/Keyword: Two-point normalization

Search Result 24, Processing Time 0.018 seconds

Point Values and Normalization of Two-Direction Multi-wavelets and their Derivatives

  • KEINERT, FRITZ;KWON, SOON-GEOL
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.1053-1067
    • /
    • 2015
  • A two-direction multiscaling function ${\phi}$ satisfies a recursion relation that uses scaled and translated versions of both itself and its reverse. This offers a more general and flexible setting than standard one-direction wavelet theory. In this paper, we investigate how to find and normalize point values and derivative values of two-direction multiscaling and multiwavelet functions. Determination of point values is based on the eigenvalue approach. Normalization is based on normalizing conditions for the continuous moments of ${\phi}$. Examples for illustrating the general theory are given.

A design of floating-point arithmetic unit for superscalar microprocessor (수퍼스칼라 마이크로프로세서용 부동 소수점 연산회로의 설계)

  • 최병윤;손승일;이문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1345-1359
    • /
    • 1996
  • This paper presents a floating point arithmetic unit (FPAU) for supescalar microprocessor that executes fifteen operations such as addition, subtraction, data format converting, and compare operation using two pipelined arithmetic paths and new rounding and normalization scheme. By using two pipelined arithmetic paths, each aritchmetic operation can be assigned into appropriate arithmetic path which high speed operation is possible. The proposed normalization an rouding scheme enables the FPAU to execute roundig operation in parallel with normalization and to reduce timing delay of post-normalization. And by predicting leading one position of results using input operands, leading one detection(LOD) operation to normalize results in the conventional arithmetic unit can be eliminated. Because the FPAU can execuate fifteen single-precision or double-precision floating-point arithmetic operations through three-stage pipelined datapath and support IEEE standard 754, it has appropriate structure which can be ingegrated into superscalar microprocessor.

  • PDF

Quantitative Evaluation of Nonlinear Shape Normalization Methods for the Recognition of Large-Set Handwrittern Characters (대용량 필기체 문자 인식을 위한 비선형 형태 정규화 방법의 정량적 평가)

  • 이성환;박정선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.84-93
    • /
    • 1993
  • Recently, several nonlinear shape normalization methods have been proposed in order to compensate for the shape distortions in handwritten characters. In this paper, we review these nonlinear shape normalization methods from the two points of view : feature projection and feature density equalization. The former makes feature projection histogram by projecting a certain feature at each point of input image into horizontal-or vertical-axis and the latter equalizes the feature densities of input image by re-sampling the feature projection histogram. A systematic comparison of these methods has been made based on the following criteria: recognition rate, processing speed, computational complexity and measure of variation. Then, we present the result of quantitative evaluation of each method based on these criteria for a large variety of handwritten Hangul syllables.

  • PDF

PMSM sensorless control by back emf normalization (역기전력 정규화에 의한 PMSM의 센서리스 제어)

  • Lee Jung-Jun;Park Sung-Jun;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.300-303
    • /
    • 2002
  • With increase of servo motor In industrial and home application, a number of papers related to PMSM control have been researched. Among them, sensorless control schemes are especially concerned in the view point of its cost reduction. In the conventional approach, a rotor position is generally estimated by the integration of estimated rotor speed. In this method, because of their tight relationship between the amplitude of back-emf and rotor position. it is somewhat difficult to find two parameters at the same time. To solve this problem, a novel sensorless control scheme is proposed. It utilizes a back-emf normalization, so it does not requires the variables related with the amplitude of back-emf. The validity of the proposed control scheme was verified through experimental results.

  • PDF

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

Design of Pipelined Floating-Point Arithmetic Unit for Mobile 3D Graphics Applications

  • Choi, Byeong-Yoon;Ha, Chang-Soo;Lee, Jong-Hyoung;Salclc, Zoran;Lee, Duck-Myung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.816-827
    • /
    • 2008
  • In this paper, two-stage pipelined floating-point arithmetic unit (FP-AU) is designed. The FP-AU processor supports seventeen operations to apply 3D graphics processor and has area-efficient and low-latency architecture that makes use of modified dual-path computation scheme, new normalization circuit, and modified compound adder based on flagged prefix adder. The FP-AU has about 4-ns delay time at logic synthesis condition using $0.18{\mu}m$ CMOS standard cell library and consists of about 5,930 gates. Because it has 250 MFLOPS execution rate and supports saturated arithmetic including a number of graphics-oriented operations, it is applicable to mobile 3D graphics accelerator efficiently.

  • PDF

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

Development of an Integer Algorithm for Computation of the Matching Probability in the Hidden Markov Model (I) (은닉마르코브 모델의 부합확률연산의 정수화 알고리즘 개발 (I))

  • 김진헌;김민기;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.11-19
    • /
    • 1994
  • The matching probability P(ο/$\lambda$), of the signal sequence(ο) observed for a finite time interval with a HMM (Hidden Markov Model $\lambda$) indicates the probability that signal comes from the given model. By utilizing the fact that the probability represents matching score of the observed signal with the model we can recognize an unknown signal pattern by comparing the magnitudes of the matching probabilities with respect to the known models. Because the algorithm however uses floating point variables during the computing process hardware implementation of the algorithm requires floating point units. This paper proposes an integer algorithm which uses positive integer numbers rather than float point ones to compute the matching probability so that we can economically realize the algorithm into hardware. The algorithm makes the model parameters integer numbers by multiplying positive constants and prevents from divergence of data through the normalization of variables at each step. The final equation of matching probability is composed of constant terms and a variable term which contains logarithm operations. A scheme to make the log conversion table smaller is also presented. To analyze the qualitive characteristics of the proposed algorithm we attatch simulation result performed on two groups of 10 hypothetic models respectively and inspect the statistical properties with repect to the model order the magnitude of scaling constants and the effect of the observation length.

  • PDF

Adaptive Key-point Extraction Algorithm for Segmentation-based Lane Detection Network (세그멘테이션 기반 차선 인식 네트워크를 위한 적응형 키포인트 추출 알고리즘)

  • Sang-Hyeon Lee;Duksu Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Deep-learning-based image segmentation is one of the most widely employed lane detection approaches, and it requires a post-process for extracting the key points on the lanes. A general approach for key-point extraction is using a fixed threshold defined by a user. However, finding the best threshold is a manual process requiring much effort, and the best one can differ depending on the target data set (or an image). We propose a novel key-point extraction algorithm that automatically adapts to the target image without any manual threshold setting. In our adaptive key-point extraction algorithm, we propose a line-level normalization method to distinguish the lane region from the background clearly. Then, we extract a representative key point for each lane at a line (row of an image) using a kernel density estimation. To check the benefits of our approach, we applied our method to two lane-detection data sets, including TuSimple and CULane. As a result, our method achieved up to 1.80%p and 17.27% better results than using a fixed threshold in the perspectives of accuracy and distance error between the ground truth key-point and the predicted point.

A Real-Time Method for the Diagnosis of Multiple Switch Faults in NPC Inverters Based on Output Currents Analysis

  • Abadi, Mohsen Bandar;Mendes, Andre M.S.;Cruz, Sergio M.A.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1415-1425
    • /
    • 2016
  • This paper presents a new approach for fault diagnosis in three-level neutral point clamped inverters. The proposed method is based on the average values of the positive and negative parts of normalized output currents. This method is capable of detecting and locating multiple open-circuit faults in the controlled power switches of converters in half of a fundamental period of those currents. The implementation of this diagnostic approach only requires two output currents of the inverter. Therefore, no additional sensors are needed other than the ones already used by the control system of a drive based on this type of converter. Moreover, through the normalization of currents, the diagnosis is independent of the load level of the converter. The performance and effectiveness of the proposed diagnostic technique are validated by experimental results obtained under steady-state and transient conditions.