• 제목/요약/키워드: Two-point Dixon

검색결과 7건 처리시간 0.018초

Two-point Dixon기법을 이용한 간의 지방정량화에 Gd-EOB-DTPA가 미치는 영향 (Effect of Gd-EOB-DTPA on Hepatic Fat Quantification using Two-point Dixon Technique)

  • 구노현;최관우;유병규
    • 한국콘텐츠학회논문지
    • /
    • 제17권7호
    • /
    • pp.215-221
    • /
    • 2017
  • 본 연구는 two-point Dixon기법을 이용한 간의 지방정량화 검사 시 가돌리늄 조영제인 Gd-EOB-DTPA가 지방정량화에 어떠한 영향을 미치는지 알아보고자 하였다. 연구방법은 2016년 4월부터 동년 9월까지 two-point Dixon 기법을 이용해 간의 지방정량화 검사를 시행한 60명을, 두 그룹(정상의 간기증자 30명, 비정상의 간 지방증 환자 30명)으로 분류한 후 조영제 주입에 따른 지방분율의 변화를 비교 평가하였다. 연구 결과, 두 그룹 모두 조영제 주입 전 보다 후의 지방분율이 크게 감소(간 기증자 -33.8%, 간 지방증 환자 -47.2%)하는 것으로 나타나 Gd-EOB-DPTA가 지방정량화에 영향을 미친다는 것을 알 수 있었다. 결론적으로 two-point Dixon기법을 이용해 간 지방정량화 검사를 시행할 경우, Gd-EOB-DTPA 주입 전에 영상을 획득해야 지방분율의 변화를 최소화 할 수 있어 정확한 진단을 할 수 있다.

Assessment of The Accuracy of The MR Abdominal Adipose Tissue Volumetry using 3D Gradient Dual Echo 2-Point DIXON Technique using CT as Reference

  • Kang, Sung-Jin
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.603-615
    • /
    • 2016
  • In this study, in order to determine the validity and accuracy of MR imaging of 3D gradient dual echo 2-point DIXON technique for measuring abdominal adipose tissue volume and distribution, the measurements obtained by CT were set as a reference for comparison and their correlations were evaluated. CT and MRI scans were performed on each subject (17 healthy male volunteers who were fully informed about this study) to measure abdominal adipose tissue volume. Two skilled investigators individually observed the images acquired by CT and MRI in an independent environment, and directly separated the total volume using region-based thresholding segmentation method, and based on this, the total adipose tissue volume, subcutaneous adipose tissue volume and visceral adipose tissue volume were respectively measured. The correlation of the adipose tissue volume measurements with respect to the observer was examined using the Spearman test and the inter-observer agreement was evaluated using the intra-class correlation test. The correlation of the adipose tissue volume measurements by CT and MRI imaging methods was examined by simple regression analysis. In addition, using the Bland-Altman plot, the degree of agreement between the two imaging methods was evaluated. All of the statistical analysis results showed highly statistically significant correlation (p<0.05) respectively from the results of each adipose tissue volume measurements. In conclusion, MR abdominal adipose volumetry using the technique of 3D gradient dual echo 2-point DIXON showed a very high level of concordance even when compared with the adipose tissue measuring method using CT as reference.

저자장 자기공명영상에서 위상-크기 결합 밀도 함수를 이용한 자동 불균일 자장 보정 물-지방 영상 기법 (Water-Fat Imaging with Automatic Field Inhomogeneity Correction Using Joint Phase Magnitude Density Function at Low Field MRI)

  • 김판기;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • 제15권1호
    • /
    • pp.57-66
    • /
    • 2011
  • 목적 : 0.35 Teslas의 저자장 자기공명영상 시스템에서 인체 조직의 물 성분 또는 지방 성분의 영상을 얻는데 있어서 주자장의 불균일도를 two-point Dixon 방법을 기반으로 보정하는 새로운 방법을 모색하였다. 대상 및 방법 : Two-point Dixon 방법을 사용하여 물과 지방의 위상이 동상일 때와 역상일 때의 영상들을 얻은 후 그 영상들로부터 위상과 크기의 위상 크기 결합 밀도 함수를 계산하고, 이를 통해 물과 지방의 영역을 분리하여 3차원 볼륨의 물 영역에서의 주자장의 불균일도 패턴을 분석하고 이를 반복적으로 보정하여 주자장의 불균일도를 개선하였다. 결과 : 제안한 영상 기법으로 인체의 여러 부위에서 주자장의 불균일도를 보정한 물과 지방 영상을 얻을 수 있었다. 삼차원 보정을 통하여 멀티 슬라이스 전체 영상에서 균일하게 물 또는 지방만의 영상을 얻을 수 있었다. 결론 : 위상-크기 결합 밀도 함수를 통하여 물과 지방의 영역을 분리할 수 있었고, 이를 이용하여 자장의 불균일도를 분석하고 보정할 수 있었다. 제안한 방법을 통해 주자장의 불균일도가 월등히 개선된 물 또는 지방 영상을 얻을 수 있었다.

Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy

  • Sang Hyup Lee;Hye Jin Yoo;Seung-Man Yu;Sung Hwan Hong;Ja-Young Choi;Hee Dong Chae
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.126-133
    • /
    • 2019
  • Objective: To compare the lumbar vertebral bone marrow fat-signal fractions obtained from six-echo modified Dixon sequence (6-echo m-Dixon) with those from single-voxel magnetic resonance spectroscopy (MRS) in patients with low back pain. Materials and Methods: Vertebral bone marrow fat-signal fractions were quantified by 6-echo m-Dixon (repetition time [TR] = 7.2 ms, echo time (TE) = 1.21 ms, echo spacing = 1.1 ms, total imaging time = 50 seconds) and single-voxel MRS measurements in 25 targets (23 normal bone marrows, two focal lesions) from 24 patients. The point-resolved spectroscopy sequence was used for localized single-voxel MRS (TR = 3000 ms, TE = 35 ms, total scan time = 1 minute 42 seconds). A 2 × 2 × 1.5 cm3 voxel was placed within the normal L2 or L3 vertebral body, or other lesions including a compression fracture or metastasis. The bone marrow fat spectrum was characterized on the basis of the magnitude of measurable fat peaks and a priori knowledge of the chemical structure of triglycerides. The imaging-based fat-signal fraction results were then compared to the MRS-based results. Results: There was a strong correlation between m-Dixon and MRS-based fat-signal fractions (slope = 0.86, R2 = 0.88, p < 0.001). In Bland-Altman analysis, 92.0% (23/25) of the data points were within the limits of agreement. Bland-Altman plots revealed a slight but systematic error in the m-Dixon based fat-signal fraction, which showed a prevailing overestimation of small fat-signal fractions (< 20%) and underestimation of high fat-signal fractions (> 20%). Conclusion: Given its excellent agreement with single-voxel-MRS, 6-echo m-Dixon can be used for visual and quantitative evaluation of vertebral bone marrow fat in daily practice.

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권2호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

Characteristics of Magnetic Resonance-Based Attenuation Correction Map on Phantom Study in Positron Emission Tomography/Magnetic Resonance Imaging System

  • Hong, Cheolpyo
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.189-193
    • /
    • 2020
  • An MR-based attenuation correction (MRAC) map plays an important role in quantitative positron emission tomography (PET) image evaluation in PET/magnetic resonance imaging (MRI) systems. However, the MRAC map is affected by the magnetic field inhomogeneity of MRIs. This study aims to evaluate the characteristics of MRAC maps of physical phantoms on PET/MRI images. Phantom measurements were performed using the Siemens Biograph mMR. The modular type physical phantoms that provide assembly versatility for phantom construction were scanned in a four-channel Body Matrix coil. The MRAC map was generated using the two-point Dixon-based segmentation method for whole-body imaging. The modular phantoms were scanned in compact and non-compact assembly configurations. In addition, the phantoms were scanned repeatedly to generate MRAC maps. The acquired MRAC maps show differently assigned values for void areas. An incorrect assignment of a void area was shown on a locally compact space between phantoms. The assigned MRAC values were distorted using a wide field-of-view (FOV). The MRAC values also differed after repeated scans. However, the erroneous MRAC values appeared outside of phantom, except for a large FOV. The MRAC map of the phantom was affected by phantom configuration and the number of scans. A quantitative study using a phantom in a PET/MRI system should be performed after evaluation of the MRAC map characteristics.