• Title/Summary/Keyword: Two-phase plume

Search Result 22, Processing Time 0.025 seconds

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

A Numerical Study on the Performance Analysis of Plume Abatement Cooling Tower with Dry Type Heat Exchanger (건식 열교환기를 이용한 백연방지 냉각탑 성능의 수치해석적 연구)

  • 김병조;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1018-1027
    • /
    • 2003
  • This study treats the analysis of the performance and the design of plume abatement wet/dry cooling tower with dry type heat exchanger using a numerical method. A two-dimensional analysis is performed using the finite volume method for mechanical draft counterflow and crossflow tower. For a coupling problem between water and air system, a turbulent two phase flow is considered. Effectiveness-NTU method is used for modeling of the dry type heat exchanger. The parameter change simulations of the outer wall shape, the relative flowrate of air, and attachment of an air mixer are performed to examine the effect on plume abatement. It is found that if the relative air flowrate ratio and the adequate air mixer type are chosen well in addition to the ratio of water to air flowrate, the loss of the cooling capacity and the additional cost are reduced and the plume is abated.

Numerical Study on the Performance Analysis of Plume Abatement Cooling Tower with Dry Type Heat Exchanger

  • Kim, Byung-Jo;Choi, Young-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.61-70
    • /
    • 2005
  • This study treats the numerical analysis of performance and design for plume abatement wet/dry cooling tower with a dry type heat exchanger. A two-dimensional analysis is performed using the finite volume method for mechanical draft counterflow and crossflow tower. For a coupling problem between water and air system, a turbulent two phase flow is considered. The Effectiveness-NTU method is used for modeling of the dry type heat exchanger. The parametric simulations such as the relative flowrate of air and attachment length of an air mixer are performed to examine the effect on plume abatement. It is found that if the relative air flowrate ratio and the adequate air mixer type are chosen well in addition to the ratio of water to air flowrate, the loss of cooling capacity and the additional cost are reduced and the plume is abated.

Two phase analysis of solid rocket motor plume as particle characteristics (입자 특성에 따른 고체모터 플룸 이상유동 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • KSLV-I KM plume including alumina particle has been studied using the continuum solver. Alumina particles are assumed to have 7 different diameters, and the specific ratio of the plume gas is assumed to be 1.2, with which the internal nozzle flow characteristics are similar to those of the chemically equilibrium analysis results. The results showed that the expansion angle of the particles is smaller than that of the gas phase, and that the big sized alumina particles are gathered in the plume core and the expansion angles of the big sized particles are smaller than those of the light particles. When the emissivity of the particles are assumed to be 0.1, the radiative heat flux is equivalent to those measured during the flight test of KSLV-I.

A Study for Rocket Exhaust Flow Cooling due to the Central Spray Type Water Injection (중앙 분사 방식 냉각수 투입에 의한 로켓 연소 후류 냉각에 관한 연구)

  • Kang, Sun-Il;Nam, Jung-Won;Huh, Hwan-Il
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 2013
  • In this study, the cooling of rocket exhaust plume by sprayed water inside plume were investigated as varying of sprayed water mass, location, and method using computational fluid analysis. For Analyze rocket exhaust plume, a single species unreacted analysis model based on the chemically frozen analysis was used and the discrete particle model which was a kind of Euler-Lagrangian analysis model was used for simulate sprayed water inside plume. It was confirmed that the temperature of plume was reduced without cooling when water mass was two times of plume mass through analysis results.

CFD Investigation of Rocket Nozzle Plume for Flame Deflector Preliminary Analysis (화염유도로 예비 해석을 위한 로켓노즐 플룸의 CFD 해석 검증)

  • Jun, Doo-Sung;Kim, Jae-Woo;Kim, Jong-Rok;Kim, Woo-Kyeom;Kim, Seung-Cheol;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.313-316
    • /
    • 2011
  • This paper investigates CFD investigation on single phase supersonic nozzle flow and 2-phase subson ic flow prior to rocket nozzle supersonic 2-phase flow with water injection within the flame deflector. Numerical results of supersonic nozzle single phase flow showed no notable unrealistic behavior as it captures the usual shock cell structures. Three-dimensional 2-phase flow analysis has also been performed to verify whether the approach can grab the droplet behavior during cooling by water injection. It is expected these basic studies will enhance the cooling problem analysis of supersonic 2-phase rocket plume in the future.

  • PDF

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System (잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성)

  • Choi, Choeng Ryul;Kim, Chang Nyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

A Study on Bubbles Flow in the Gas-injected Cylindrical Bath (기체가 주입된 원통형 용기내에서 기포유동에 관한 연구)

  • Seo Dong-Pyo;Park Keun-Uk;Oh Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF