• Title/Summary/Keyword: Two-phase hybrid stepping motor

Search Result 2, Processing Time 0.019 seconds

Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors (2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상)

  • Do-Hyun, Kim;Sang-Hoon, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

Cogging Force Reduction of Two Phase Linear Hybrid Stepping Motor (2상 선형 하이브리드 스테핑 전동기의 코깅 리플 저감)

  • Hwarg, Tai-Sik;Seok, Jul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.96-98
    • /
    • 2005
  • This paper presents a new two-phase linear hybrid stepping motors (LHSM), which has two windings per phase and one of them shares the other phase winding. The proposed motor shows a unique ability to deliver low cogging force without any particular complex control scheme and additional power electronics hardware in micro stepping control. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed design.

  • PDF