• Title/Summary/Keyword: Two-phase fluid

Search Result 667, Processing Time 0.034 seconds

ANALYSIS ON STEAM CONDENSING FLOW USING NON-EQUILIBRIUM WET-STEAM MODEL (비평형 습증기 모델을 적용한 증기 응축 유동 해석)

  • Kim, C.H.;Park, J.H.;Ko, D.G.;Kim, D.I.;Kim, Y.S.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • When the steam is used as working fluid in fluid machinery, different from other gases as air, phase transition (steam condensation) can occur and it affects not only the flow fields, but also machine performance & efficiency. Therefore, considering phase transition phenomena in CFD calculation is required to achieve accurate prediction of steam flow and non-equilibrium wet-steam model is needed to simulate realistic steam condensing flow. In this research, non-equilibrium wet-steam model is implemented on in-house code(T-Flow), the flow fields including phase transition phenomena in convergent-divergent nozzle are studied and compared to results of advance researches.

Formation of a paraffin slurry and its convective heat transfer in a circular pipe (파라핀 슬러리의 생성 및 관내 대류열전달에 관한 연구)

  • Choe, Eun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.50-60
    • /
    • 1998
  • As a method to develop an enhanced heat transfer fluid, the fine particles of a phase-change material were mixed with a conventional heat transfer fluid. Paraffin, which can be obtained easily in domestic market, was used for the phase-change material and water was used as a carrier fluid. Fine liquid particles of paraffin were formed in water as an emulsion by using an emulsifier, and they were cooled rapidly to become solid particle, resulting in paraffin slurry. The average diameter of produced solid particles was inversely proportional to the amount of the added emulsifier, which was theoretically proved. The produced paraffin slurry was tested thermally in heat transfer test section having a constant-heat-flux boundary condition. The test section was made of a circular stainless-steel pipe, which was directly heated by the power supply having a maximum of 50 Volts-500 Amperes. DSC(Differential scanning calorimeter) tests showed that two kinds of phase change were involved in the melting of paraffin, and it was explained in two different ways. A five- region-melting model was developed by extending the conventional three-region-melting model, and was used to obtain the local bulk mean temperatures of paraffin slurry in the heating test section. The local heat transfer coefficient showed a maximum where the bulk mean temperature of the paraffin slurry reached at the melting temperature of paraffin.

The Hybrid Rocket Internal Ballistics with Two-phase Fluid Modeling for Self-pressurizing $N_2O$ II (자발가압 성질을 가진 아산화질소의 2상유체 모델링을 통한 하이브리드 로켓 내탄도 해석 II)

  • Rhee, Sun-Jae;Lee, Jung-Pyo;Kim, Hak-Chul;Moon, Keun-Hwan;Choi, Won-Jun;Jung, Sik-Hang;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.50-54
    • /
    • 2011
  • This paper presents a two-phase model for hybrid rocket internal ballistics design using $N_2O$ as oxidizer The two-phase model results are compared with data obtained from static firing test. Two-phase model is suitable for blow-down type with saturated compressible fluid as $N_2O$, presented the result by Part 1. HDPE as Fuel, and $N_2O$ as oxidizer were used during the static firing test. The combustor were designed for an average thrust of 30 kgf where oxidizer tank pressure in set to 50 bar. The numerical results of internal ballistic showed good agreements with static firing test results where thrust, oxidizer tank pressure and chamber pressure are compared.

  • PDF

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • 김재훈;윤상천;지남용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.29-36
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of molar and fineness modulus of ,and on the properties of fresh mortar. The effect of water-binder ratio, sand-binder ration, content; of ggbs (by mass of total cementitious materials), and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the following conclusion; can be drawn: (1) The mixing time needed (or high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

  • PDF

Numerical Simulation of Two-Phase Flow for Gas-Solid Particles (가스와 입자가 혼합된 2상 유동에 관한 수치해석적 연구)

  • Jung H.;Choi J. W.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The phenomena of two-phase suspension flows appear widely in nature and industrial processes. Hence, it is of great importance to understand the mechanism of the gas-solid two-phase flows. In the present study, the numerical simulation has been approached by utilizing the Eulerian-Lagrangian methodology for describing the characteristics of the fluid and particulate phases in a vertical pipe and a 90°square-sectioned bend. The continuous phase(gas phase) is described by the Eulerian formulation and a κ-ε turbulence model is employed to find mean and turbulent properties of the gas phase. The particle properties(velocity and trajectory) are then described by a Lagrangian approach and computed using the mean velocity and turbulent fluctuating velocity of the gas phase. The predictions are compared with measurements by laser-Doppler velocimeter for the validation. As a result, the calculated results show good agreements.

  • PDF

Direct forcing/fictitious domain-Level set method for two-phase flow-structure interaction (이상 유동에서의 유체-구조 연성해석을 위한 Direct Forcing/Ficititious Domain-Level Set Method)

  • Jeon, Chung-Ho;Yoon, Hyun-Sik;Jung, Jae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.36-41
    • /
    • 2011
  • In the present paper, a direct forcing/fictitious domain (DF/FD) level set method is proposed to simulate the FSI (fluid-solid interaction) in two-phase flow. The main idea is to combine the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. The DF/FD method is a non-Lagrange-multiplier version of a distributed Lagrange multiplier/fictitious domain (DLM/FD) method. This method does not sacrifice the accuracy and robustness by employing a discrete ${\delta}$ (Dirac delta) function to transfer quantities between the Eulerian nodes and Lagrangian points explicitly as the immersed boundary method. The advantages of this approach are the simple concept, easy implementation, and utilization of the original governing equation without modification. Simulations of various water-entry problems have been conducted to validate the capability and accuracy of the present method in solving the FSI in two-phase flow. Consequently, the present results are found to be in good agreement with those of previous studies.

Effect of Water Level on the Hydroelastic Vibration of Two Rectangular Plates Coupled with Water (물로연성된 두 직사각평판의 접수진동에 대한 수위의 영향)

  • Yoo, Gye-Hyoung;Kwon, Tae-Kyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.839-844
    • /
    • 2003
  • The effect of water level on the free vibration of a partially water-filled two rectangular plates structure was investigated by experimental modal analysis and finite element analysis using ANSYS computer program. Modal parameters of two rectangular plates coupled with water were obtained by means of experiment and the FEM solutions were compared with the experimental solutions to verify the finite element model. As a result, the comparison between the experiment and FEM results showed excellent agreement. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The effect of water level and water gap size on the fluid-coupled natural frequency were investigated. It was found that the natural frequency of the partially water-filled two rectangular plates are not proportional to the water level, but depend on mode number of plates.

  • PDF

Solid-liquid two phase helica l flow in a Rotating Annulus (Slim hole 환형관내 고-액 2상 유동에 관한 연구)

  • Han, Sang-Mok;Woo, Nam-Sub;Hwang, Young-Kyu;Kim, Young-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.369-372
    • /
    • 2008
  • An experimental study is carried out to study two-phase vertically upward hydraulic transport of solid particles by water in a vertical and inclined (0${\sim}$60 degree) concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in shear-thinning fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, and so on. Annular fluid velocities varied from 0.2 m/s to 1.5 m/s for the actual drilling operational condition. Macroscopic behavior of solid particles, averaged flow rate, and particle rising velocity are observed. Main parameters considered in this study were radius ratio, inner-pipe rotary speed, fluid flow regime, and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become

  • PDF

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

Hemodynamical analysis by viscosity characteristics of artificial blood for μ-PIV experiment of Radio-cephalic arteriovenous fistula(RC-AVF) (μ-PIV기법을 이용한 동정맥루 모사혈관에서의 모사 혈액의 점도특성에 따른 혈류역학적 분석)

  • Song, Ryungeun;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Radio-cephalic arteriovenous fistula(RC-AVF) is the most recommended operation of achieving access for hemodialysis. However, it has high rates of early failure depending on the many haemodynamic conditions. To increase RC-AVF patency rate, many researches were performed by in-vitro experiment via artificial vessel and blood analogue fluid, and there were conflicting opinions about whether the non-Newtonian properties of blood have an influence on the flow in large arteries. To investigate the influence of viscoelasticity of blood within the RC-AVF, we fabricated three dimensional artificial RC-AVF and two kinds of blood analogue fluid. The velocity field of two fluids within the vessel were measured by micro-particle velocimetry(m-PIV) and compared with each other. The velocity profiles of both fluids for systolic phase were matched well while those for diastolic phase did not correspond. Therefore, it is desired to use non-newtonian fluid for in-vitro experiment of RC-AVF.