• Title/Summary/Keyword: Two-node vibration

Search Result 47, Processing Time 0.022 seconds

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Free-vibration and buckling of Mindlin plates using SGN-FEM models and effects of parasitic shear in models performance

  • Leilson J. Araujo;Joao E. Abdalla Filho
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • Free-vibration and buckling analyses of plate problems are investigated with the aid of the strain gradient notation finite element method (SGN-FEM). As SGN-FEM employs physically interpretable polynomials in developing finite elements, parasitic shear sources, which are the cause of shear locking, can be precisely identified and subsequently eliminated. This allows two mutually complementary objectives to be defined in this work, namely, evaluate the efficiency of free-vibration and buckling results provided by corrected models, and study the severity of parasitic shear effects on plate models performance. Parasitic shear are flexural terms erroneously present in shear strain polynomials. It is reviewed here that six parasitic shear terms arise during the formulation of the four-node Mindlin plate element. Two parasitic shear terms have been identified in the in-plane shear strain polynomial while other two have been identified in each of the transverse shear strain polynomials. The element is corrected a-priori, i.e., during development, by simply removing the spurious terms from the shear strain polynomials. The computational implementation of the element in its two versions, namely, containing the parasitic shear terms (PS) and corrected for parasitic shear (SG), allows for assessments of the accuracy of results and of the deleterious effects of parasitic shear in free vibration and buckling analyses. This assessment of the parasitic shear effects is a novelty of this work. Validation of the SG model is done comparing its results with analytical results and results provided by other numerical procedures. Analyses are performed for square plates with different thickness-to-length ratios and boundary conditions. Results for thin plates provided by the PS model do not converge to the correct solutions, which indicates that parasitic shear must be eliminated. That is, analysts should not rely on refinement alone. For thick plates, PS model results can be considered acceptable as deleterious effects are really critical in thin plates. On the other hand, results provided by the SG model converge well for both thin and thick plates. The effectiveness of the SG model is established via high-accuracy results obtained in several examples. It is concluded that corrected SGN-FEM models are efficient alternatives for free-vibration and buckling analysis of Mindlin plate problems, and that precise elimination of parasitic shear is a requirement for sound analyses.

Effects of hygro-thermal environment on dynamic responses of variable thickness functionally graded porous microplates

  • Quoc-Hoa Pham;Phu-Cuong Nguyen;Van-Ke Tran
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.563-581
    • /
    • 2024
  • This paper presents a novel finite element model for the free vibration analysis of variable-thickness functionally graded porous (FGP) microplates resting on Pasternak's medium in the hygro-thermal environment. The governing equations are established according to refined higher-order shear deformation plate theory (RPT) in construction with the modified couple stress theory. For the first time, three-node triangular elements with twelve degrees of freedom for each node are developed based on Hermitian interpolation functions to describe the in-plane displacements and transverse displacements of microplates. Two laws of variable thickness of FGP microplates, including the linear law and the nonlinear law in the x-direction are investigated. Effects of thermal and moisture changes on microplates are assumed to vary continuously from the bottom surface to the top surface and only cause tension loads in the plane, which does not change the material's mechanical properties. The numerical results of this work are compared with those of published data to verify the accuracy and reliability of the proposed method. In addition, the parameter study is conducted to explore the effects of geometrical and material properties such as the changing law of the thickness, length-scale parameter, and the parameters of the porosity, temperature, and humidity on the free vibration response of variable thickness FGP microplates. These results can be applied to design of microelectromechanical structures in practice.

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

Dynamic analysis of water storage tank with rigid block at bottom

  • Adhikary, Ranjan;Mandal, Kalyan Kumar
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.57-77
    • /
    • 2018
  • The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H.;Akbas, Seref D.;Abdelrahman, Alaa A.;Assie, Amr;Eltaher, Mohamed A.;Mohamed, Elshahat F.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.545-557
    • /
    • 2021
  • Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.

Free vibration analysis of multiple open-edge cracked beams by component mode synthesis

  • Kisa, M.;Brandon, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.81-92
    • /
    • 2000
  • This study is an investigation of the effect of cracks on the dynamical characteristics of a cantilever beam, having multiple open-edge transverse cracks. The flexibilities due to crack have been identified for several crack depths and locations. In the study the finite element method and component mode synthesis methods are used. Coupling the components is performed by a flexibility matrix taking into account the interaction forces. Each component is modelled by cantilever beam finite elements with two nodes and three degrees of freedom at each node. The results obtained lead to conclusion that, by using the drop in the natural frequencies and the change in the mode shapes, the presence and nature of cracks in a structure can be detected. There is some counter-evidence, however, that the effects due to multiple cracks may interact to make detection more difficult than for isolated cracks.

The Analysis of Eigenvalue Problems of Curved Beam Using Curvature-Based Curved Beam Elements (곡률 곡선보요소에 의한 곡선보의 고유치문제 해석)

  • 양승용;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3020-3027
    • /
    • 1993
  • Curved beam element has received attention because of its own usefulness and its bearing on general curved elements like shells. In conventional curved beam elements stiffness matrix is overestimated and eigensolutions are poor. To avoid this phenomenon it is necessary to use a large number of elements and, as a result, the total number of degrees of freedom is increased. In this paper the two-noded, with three degrees of freedom at each node, in-plane curvature-based curbed beam element is employed in eigen-analysis of curved beam. It is shown that the curvature-based beam element is very efficient in vibration analysis and also that it is applicable to both thin and thick curved beams.

Study of Detent Force Minimization Techniques in Permanent Magnet Linear Synchronous Motor (영구자석 선형동기전동기의 디텐트력 최소화 기법 연구)

  • Lim, Ki-Chae;Woo, Joon-Keun;Hong, Jung-Pyo;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.763-765
    • /
    • 2000
  • Detent force is produced in a permanent magnet linear machine. It is generally an undesired effect that contributes to the output ripple of machine, vibration and noise. This paper analyzes detent force in a Permanent Magnet Linear Synchronous Motor (PMLSM) by using various detent force minimization techniques. A two-dimensional Finite Element Method(FEM) is used to predict detent forces due to structural factors and non-linearity. And moving node technique for the drawing models is used to reduce modeling time and efforts.

  • PDF

A Research of LEACH Protocol improved Mobility and Connectivity on WSN using Feature of AOMDV and Vibration Sensor (AOMDV의 특성과 진동 센서를 적용한 이동성과 연결성이 개선된 WSN용 LEACH 프로토콜 연구)

  • Lee, Yang-Min;Won, Joon-We;Cha, Mi-Yang;Lee, Jae-Kee
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.167-178
    • /
    • 2011
  • As the growth of ubiquitous services, various types of ad hoc networks have emerged. In particular, wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are widely known ad hoc networks, but there are also other kinds of wireless ad hoc networks in which the characteristics of the aforementioned two network types are mixed together. This paper proposes a variant of the Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol modified to be suitable in such a combined network environment. That is, the proposed routing protocol provides node detection and route discovery/maintenance in a network with a large number of mobile sensor nodes, while preserving node mobility, network connectivity, and energy efficiency. The proposed routing protocol is implemented with a multi-hop multi-path algorithm, a topology reconfiguration technique using node movement estimation and vibration sensors, and an efficient path selection and data transmission technique for a great many moving nodes. In the experiments, the performance of the proposed protocol is demonstrated by comparing it to the conventional LEACH protocol.