• 제목/요약/키워드: Two-link manipulator

검색결과 128건 처리시간 0.026초

평형링크 메카니즘이 있는 관절형 로보트 회전축의 위치제어 (Position control of robot's rotational axis having parallel link mechanism)

  • 여인택;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.341-345
    • /
    • 1986
  • In the course of robot control system building, there are problems in the position control loop of 3rd axis of robot manipulator. The problems are summerized as two: one is uncontrollability of position and the other is oscillation. And these problems are analyzed through experiment, and it is known that the cause of problems in torsional vibration of 3rd axis. So that these two problems are solved by noise immunity enhancement and lowering of PI controller gain.

  • PDF

Tracking Control of RLFJ Robot Manipulator Using Only Position Measurements by Backstepping Method

  • Ji H. Uh;Jongn H. Oh;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.8-13
    • /
    • 1998
  • A tracking controller is presented for RLFJ(rigid link flexible joint) robot manipulators with only position measurements. The controller is developed based on the integrator backstepping design method and on the two observers: the first is simple linear form observer for the filtered link velocity errors and the other for the actuator velocities. The proposed controller achieves exponential tracking of link positions and velocities while keeping all internal signals bounded. It also guarantees exponential convergence of the estimated signals to their actual ones. Finally, simulation results are included to demonstrate the tracking performance.

  • PDF

Error Analysis of a Parallel Mechanism Considering Link Stiffness and Joint Clearances

  • Park, Woo-Chun;Song, Jae-Bok;Daehie Hong;Shim, Jae-Kyung;Lim, Seung-Reung;Kyungwoo Kang;Park, Sungchul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.799-809
    • /
    • 2002
  • In order to utilize a parallel mechanism as a machine tool component, it is important to estimate the errors of its end-effector due to the uncertainties in parts. This study proposes an error analysis for a new parallel device, a cubic parallel mechanism. For the parallel device, we consider two kinds of errors. One is a static error due to link stiffness and the other is a dynamic error due to clearances in the parts. In this study, we propose a stiffness model for the cubic parallel mechanism under the assumption that the link stiffness is a linear function of the link length. Also, from the fact that the errors of u-joints and spherical joints are changed with the direction of force acting on the link, they are regarded as a part of link errors, and then the error model is derived using forward kinematics. Lastly, both the error models are integrated into the total error, which is analyzed with a test example that the platform moves along a circular path. This analysis can be used in predicting the accuracy of other parallel devices.

Two-Link Manipulator Control Using Indirect Adaptive Fuzzy Controller

  • N., Waurajitti;J., Ngamwiwit;T., Benjanarasuth;H., Hirata;N., Komine
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.445-445
    • /
    • 2000
  • This paper proposes the MIMO indirect adaptive fuzzy controller to control the two-link manipulators. The input-output linearization technique, equivalent control input plus integral term, augmented error model and recursive least square adaptive law are used fer the controller. The linear type of fuzzifier-defuzzifier fuzzy logic system used for nonlinear function makes easy to farm the error model and able to follow the adaptive system approach. Such that control approach, the control system is not required joint speed and accerelation measurement and easy to implement and tune. The simulation results showed that the proposed controller has good control performance, stability, very small tracking error, decoupling, fast convergence, robust to parameter variation and load.

  • PDF

가변구조 이론에 의한 로보트 팔의 추종제어에 관한 연구 (I) (A Study on the tracking control of a robot manipulator using variable structure systems (I))

  • 이진걸
    • 한국정밀공학회지
    • /
    • 제2권1호
    • /
    • pp.41-52
    • /
    • 1985
  • This study is a step in developing the sliding mode control methodology for the robust control of a class of nonlinear time-varying systems. The methodology uses in its idealized form piecewise continuous feedback control, resulting in the state trajectory "sliding" slong a time-varying sliding surface in the state space. This idealized control law achieves perfect tracking. The method is applied to the control of a two-link manipulator handling variable loads in a flexible manufacturing system environment with noise. The result through simulation is that the tracking problem of articular robot with high precision can be realized by using the variable structure system (VSS) theory. The motions of articular robot were insensitive to various payloads. payloads.

  • PDF

영상 자코비안 및 동특성 불확실성을 포함하는 로봇 매니퓰레이터의 영상기반 강인제어 (Image-based Robust Control of Robot Manipulators with Image Jacobian and Dynamics Uncertainties)

  • 김진수;모은종;이강웅
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1047-1052
    • /
    • 2008
  • In this paper, we design an image-based robust controller to compensate uncertainties with image Jacobian and robot dynamics due to uncertain depth measurement and load variations. The proposed controller with eye-in-hand structure has separate terms to compensate each of uncertainties. The ultimate boundedness of the closed-loop system is proved by the Lyapunov approach. The performance of the proposed control system is demonstrated by simulation and experimental results a 5-link robot manipulator with two degree of freedom.

비선형 강성 조절 방법을 이용한 로봇 매니퓰레이터의 컴플라이언스 제어 방법 (A Compliance Control Method for Robot Manipulators Using Nonlinear Stiffness Adaptation)

  • 김병호;오상록;서일홍;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.703-709
    • /
    • 2000
  • This paper proposes a compliance control strategy for the robot manipulators accidentally interact-ing with an unknown environment. In this proposed method each in the diagonal stiffness matrix corre-sponding to the task coordinate in a Cartesian space is adaptively adjusted during contact along the corresponding axis based on the contact force with its environment. This method can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results show the effectiveness of the proposed method by employing a two link direct drive manipulator interacting with an unknown environment.

  • PDF

로보트 매니플레이터의 제어를 위한 강인한 적응 제어기의 설계 (A STUDY OF ROBUST CONTROLLER FOR ROBOT MANIPULATOR)

  • 박경희;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.450-455
    • /
    • 1989
  • In this paper we investigate the application to the motion control of n-link robotic manipulators of recently developed stable factorization approach to tracking and disturbance rejection. Given control scheme consists of an approximate "Computed Torque" based upon a simplified model together with additional state feedback and feedforward compensation, and then, nonlinear control gain has more useful than constant control gain to guarantee robustness to parameter uncertainty and external disturbance. At this stage, we design high gain nonlinear state feedback controller and simulate this controller at the SCARA type robot manipulator of two joint.

  • PDF

A Compliance Control Strategy for Robot Manipulators Under Unknown Environment

  • Kim, Byoung-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1081-1088
    • /
    • 2000
  • In this paper, a compliance control strategy for robot manipulators that employs a self-adjusting stiffiness function is proposed. Based on the contact force, each entry of the diagonal stiffness matrix corresponding to a task coordinate in the operational space is adaptively adjusted during contact along the corresponding axis. The proposed method can be used for both the unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results involving a two-link direct drive manipulator interacting with an unknown environment demonstrates the effectiveness of the proposed method.

  • PDF

폐루프 체인 및 순간 일치 좌표계를 사용한 로봇의 속도 기구학 (Robot Velocity Kinematics by Closed-loop Chain and ICC)

  • 신동헌
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.103-111
    • /
    • 2003
  • The Denavit-Hartenberg symbolic notation provides the framework for the convenient and systematic method for the robot manipulator kinematics, but is limited its use to the lower pair mechanism or to the single loop mechanisms. The Sheth-Uicker notation is its revised and generalized version to be extended fur the entire domain of the link mechanism including the higher pairs. This paper proposes the method that uses the Sheth-Uicker notation fur the robot kinematics modeling. It uses the instantly coincident coordinate system and the closed loop chain fur the coordinate transformation. It enables us to model the velocity kinematics of the robot that has the complex structures such as the ternary links and the wheels in a systematic and rational way. As an implementation of the proposed method, the Jacobian matrices were obtained for not only the robot with two legs and a torso, but a manipulator on a mobile platform.