• Title/Summary/Keyword: Two-layered Elastic Foundation

Search Result 14, Processing Time 0.02 seconds

Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.421-437
    • /
    • 2018
  • Free vibration analysis of a three-layered microbeam including an elastic micro-core and two piezo-magnetic face-sheets resting on Pasternak's foundation are studied in this paper. Strain gradient theory is used for size-dependent modeling of microbeam. In addition, three-unknown shear and normal deformations theory is employed for description of displacement field. Hamilton's principle is used for derivation of the governing equations of motion in electro-magneto-mechanical loads. Three micro-length-scale parameters based on strain gradient theory are employed for prediction of vibrational characteristics of structure in micro-scale. The results show that increase of three micro-length-scale parameters leads to significant increase of three natural frequencies especially for increase of second micro-length-scale parameter. This result is according to this fact that stiffness of a micro-scale structure is increased with increase of micro-length-scale parameters.

Big data analysis via computer and semi numerical simulations for dynamic responses of complex nanosystems

  • Allam, Maalla;Xiaoping, Huang;Hongkai, Zhou
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.599-617
    • /
    • 2022
  • In the present research, for the first time, the vibrational as well as buckling characteristics of a three-layered curved nanobeam including a core made of functionally graded (FG) material and two layers of smart material-piezo-magneto-electric-resting on a Winkler Pasternak elastic foundation are examined. The displacement field for the nanobeam is chosen via Timoshenko beam theory. Also, the size dependency is taken into account by using nonlocal strain gradient theory, aka NSGT. Then, by employing Hamilton's principle, energy procedure, the governing equations together with the boundary conditions are achieved. The solution procedure is a numerical solution called generalized differential quadrature method, or GDQM. The accuracy and reliability of the formulation alongside solution method is examined by using other published articles. Lastly, the parameter which can alter and affect the buckling or vocational behavior of the curved nanobeam is investigated in details.

Fast analytical estimation of the influence zone depth, its numerical verification and FEM accuracy testing

  • Kuklik, Pavel;Broucek, Miroslav;Kopackova, Marie
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.635-647
    • /
    • 2009
  • For the calculation of foundation settlement it is recommended to take into account so called influence zone inside the subsoil bellow the foundation structure. Influence zone inside the subsoil is the region where the load has a substantial influence on the deformation of the soil skeleton. The soil skeleton is pre-consolidated or over consolidated due to the original geostatic stress state. An excavation changes the original geostatic stress state and it creates the space for the load transferred from upper structure. The theory of elastic layer in Westergard manner is selected for the vertical stress calculation. The depth of influence zone is calculated from the equality of the original geostatic stress and the new geostatic stress due to excavation combined with the vertical stress from the upper structure. Two close formulas are presented for the influence zone calculation. Using ADINA code we carried out several numerical examples to verify the proposed analytical formulas and to enhance their use in civil engineering practice. Otherwise, the FEM code accuracy can be control.

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad;Eyvazian, Arameh;Karbon, Mohammed;Tounsi, Abdelouahed;Lampani, Luca;Sebaey, Tamer A.
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.331-343
    • /
    • 2020
  • In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.