• Title/Summary/Keyword: Two-hand control

Search Result 840, Processing Time 0.031 seconds

A Handheld 3-Dimensional Motion Tracking Device for Ubiquitous Computing Environment (유비쿼터스 환경에서 사용 가능한 핸드 헬드형 3차원 움직임 추적장치)

  • Park, Myung-Kwan;Lee, Sang-Hoon;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1045-1050
    • /
    • 2005
  • This paper describes a design experience of a low-cost 6 DOF spatial tracker system where relative low accuracy and relatively long ranges, wireless communication will be achieved by means of low cost accelerometers and gyros with contemporary microprocessor. However, there are two key problems; one is the bias drift problem and the other is that single or double integration of acceleration signal suffers not only from noise but also from nonlinear effects caused by gravity. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Several experimental results are shown to validate our proposed algorithms.

The Effects of $\alpha$-Wave Music and Art Appreciation on Hand Function in Patient with Stroke (알파파 음악과 미술감상이 뇌졸중 환자의 손 기능에 미치는 영향)

  • Shim, Je-Myung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.4 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • Purpose:The purpose of this study was to investigate the effect of $\alpha$-wave music and art appreciation on hand function in stroke with hemiplegia. Methods:A total of 32 stroke with hemiplegia participated in this study experimental group(16 subjects) received $\alpha$-wave music and art appreciation with general neurologic therapy. Control group(16 subjects) received general neurologic therapy. All subjects were assessed for hand function(manual dexterity, power grip, pinch grip, two point discrimination(parm, finger), tactile sense(parm, finger) using a purdue pegboard, dynamometer, pinch gauge, two-point anethesiometer and semmes-weinstein monofilament wire. The data were analyzed using paired and independent t-test. Results:The results were as follows : 1. In the experimental group, manual dexterity were significantly increased between pre and post intervention(p<.05). 2. In the experimental group, tactile sesne in finger were sifnificantly increased between pre and post intervention(p<.05). Conclusion:The results of this study shows that $\alpha$-wave music and art appreciation affect the hand function of hemiplegic side with regard to manual dexterity and tactile sense.

  • PDF

The Effects of Constraint-Induced Movement Therapy on Improvement of Hand Function in Hemiplegic Side (Constraint-Induced Movement Therapy가 편마비측 손기능 증진에 미치는 영향)

  • Ryu, In-Tae;Hwang, Byong-Yong;Kim, Ji-Hye;Chung, Sang-Mi
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Purpose: This study examined the effect of constraint-induced movement therapy (CIMT) on improving the hand function in hemiplegic side. Methods: Ten subjects without a control group were given CIMT to the hemiplegic side for 3 weeks. The effects of their hand function and sensibility were examined using a MAL and two point discrimination test. Repeated ANOVA was carried out for an analysis of the effects of the application of CIMT before and after treatment. Results: The participants showed significant improvement in their functional aspect with CIMT while there were no significant changes in the time domain variables. There was significant improvement in the quantitative and qualitative aspect of MAL, as well as significant improvement in the two-point discrimination function in all fingers. Conclusion: CIMT can enhance the motor function and sensory function of the hand in hemiplegic patients.

  • PDF

A recognition of hand written Hangul by parallel procedure of character segments and structure

  • Song, Jeong-Young;Lee, Hee-Hyol;Choi, Won-Kyu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.545-549
    • /
    • 1992
  • In general, recognition of Hand written characters requires to apply an algorithm which takes into consideration of the individual differences. Considering the differences, the authors propose a new method for recognizing Hand written Hangul by parallel procedure analyzing both the segments and the structure of the character. In the previous recognition method proposed by the authors two severe restrictions were placed. The element representing consonant/O/ was closed, and the character elements were separated each other. In order to remove these two restrictions, the authors propose an improved algorithm. It is shown that Hangul in its simplified form is well recognized by using this improved algorithm.

  • PDF

Development of a Robotic Hand using Shape Memory Alloy Actuators (형상기억합금 구동기를 이용한 로봇 손 개발)

  • Jeon, Chang Gook;Yoo, Dong Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • Shape Memory Alloys (SMAs) undergo changes in shape and hardness when heated or cooled, and do so with great force. Since wire-type SMAs contract in length when heated and pull with a surprisingly large force and move silently, they can be used as actuactors which replace motors. These SMA actuators can be heated directly with electricity and can be used to create a wide range of motions. This paper presents the mechanical design and control for a three fingered, six degree-of-freedom robotic hand actuated by SMA actuators. Each finger has two joints and each joint is actuated with two tendons in the antagonistic manner. In order to create the sufficient force to make the smooth motion, the tendon is composed of two SMA actuators in parallel. For controlling the current to heat the SMA actuators, PWM drivers are used. In experiments, the antagonistic interaction of fingers are evaluated.

Human-Computer Interaction Based Only on Auditory and Visual Information

  • Sha, Hui;Agah, Arvin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.285-297
    • /
    • 2000
  • One of the research objectives in the area of multimedia human-computer interaction is the application of artificial intelligence and robotics technologies to the development of computer interfaces. This involves utilizing many forms of media, integrating speed input, natural language, graphics, hand pointing gestures, and other methods for interactive dialogues. Although current human-computer communication methods include computer keyboards, mice, and other traditional devices, the two basic ways by which people communicate with each other are voice and gesture. This paper reports on research focusing on the development of an intelligent multimedia interface system modeled based on the manner in which people communicate. This work explores the interaction between humans and computers based only on the processing of speech(Work uttered by the person) and processing of images(hand pointing gestures). The purpose of the interface is to control a pan/tilt camera to point it to a location specified by the user through utterance of words and pointing of the hand, The systems utilizes another stationary camera to capture images of the users hand and a microphone to capture the users words. Upon processing of the images and sounds, the systems responds by pointing the camera. Initially, the interface uses hand pointing to locate the general position which user is referring to and then the interface uses voice command provided by user to fine-the location, and change the zooming of the camera, if requested. The image of the location is captured by the pan/tilt camera and sent to a color TV monitor to be displayed. This type of system has applications in tele-conferencing and other rmote operations, where the system must respond to users command, in a manner similar to how the user would communicate with another person. The advantage of this approach is the elimination of the traditional input devices that the user must utilize in order to control a pan/tillt camera, replacing them with more "natural" means of interaction. A number of experiments were performed to evaluate the interface system with respect to its accuracy, efficiency, reliability, and limitation.

  • PDF

Comparison of the Immediate Effects of the Assisting Method for Center of Body Weight on Vastus Medialis Oblique and Vastus Lateralis Muscle Activation Variables and Muscle Onset Time During Stair Ascending (체중심의 보조 방법에 따른 계단 오르기 시 안쪽넓은근과 가쪽넓은근의 근활성 변수들과 개시시간에 미치는 즉각적인 영향 비교)

  • Ji-Won Shin;Sam-Won Yoon
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.107-117
    • /
    • 2023
  • Purpose: The aim of this study is to compare the immediate effects of weight-assisting methods on vastus medialis oblique (VMO) and vastus lateralis (VL) muscle activation, on the VMO/VL muscle activation ratio, and on muscle onset time in healthy subjects when ascending stairs. Methods: Healthy participants were randomly assigned to the belt group (n = 11), hand group (n = 11), and control group (n = 11). In the belt group, a belt was wrapped around the sacrum and pulled forward with both hands, moving the center of weight forward, while ascending stairs. The hand group grasped the hips with both hands and climbed stairs, assisting their weight from the rear and moving the center of weight backward, and the control group climbed the stairs without any intervention. Results: Muscle activation of the VMO decreased significantly after the intervention in the belt and hand groups, and activation of the VL muscle in both groups showed a greater decrease than that of the VMO muscle. Further, the VMO/VL muscle activation ratio increased significantly, with an improvement shown in the order of the belt group, hand group, and control group, while muscle onset time also improved in the order of the belt group, hand group, and control group. Conclusion: The belt group demonstrated the greatest effect across all dependent variables, confirming that in clinical practice, these two weight-assisting methods are more effective interventions during stair ascent for patients with knee joint instability, pain, and imbalance than no assistance.

Precise Control Law Design of Robot Finger Embedding Distributed Actuation Mechanism (분산 구동 메커니즘을 내장한 로봇 핑거의 정밀 자세 제어기 설계)

  • Shin, Young-June;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.846-851
    • /
    • 2010
  • In this paper, we newly propose a novel control strategy of a three joints-robot finger for the purpose of artificial hands. The robot finger is specifically modeled by using a 3D CAD program (CATIA), considering human fingers, and then the proposed control method is verified through the dynamic simulation tool (Simulink and Recurdyn R2). Each slider is individually controlled to be located at the optimal positions where the maximal joint torque can be generated. To prove the effectiveness of the proposed control method, we devise two cases for the reference position of sliders. By comparing the control performance of two cases, the validity of the proposed control method will be verified.

The Persisted Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation to Augment Task-Specific Induced Hand Recovery Following Subacute Stroke: Extended Study

  • Tretriluxana, Jarugool;Thanakamchokchai, Jenjira;Jalayondeja, Chutima;Pakaprot, Narawut;Tretriluxana, Suradej
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.777-787
    • /
    • 2018
  • Objective To examine the long-term effects of the low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) combined with task-specific training on paretic hand function following subacute stroke. Methods Sixteen participants were randomly selected and grouped into two: the experimental group (real LF-rTMS) and the control group (sham LF-rTMS). All the 16 participants were then taken through a 1-hour task-specific training of the paretic hand. The corticospinal excitability (motor evoke potential [MEP] amplitude) of the non-lesioned hemisphere, and the paretic hand performance (Wolf Motor Function Test total movement time [WMFT-TMT]) were evaluated at baseline, after the LF-rTMS, immediately after task-specific training, 1 and 2 weeks after the training. Results Groups comparisons showed a significant difference in the MEP after LF-rTMS and after the training. Compared to the baseline, the MEP of the experimental group significantly decreased after LF-rTMS and after the training and that effect was maintained for 2 weeks. Group comparisons showed significant difference in WMFT-TMT after the training. Only in the experimental group, the WMFT-TMT of the can lifting item significantly reduced compared to the baseline and the effect was sustained for 2 weeks. Conclusion The results of this study established that the improvement in paretic hand after task-specific training was enhanced by LF-rTMS and it persisted for at least 2 weeks.

Development of Surface Myoelectric Sensor for Myoelectric Hand Prosthesis

  • Choi, Gi-Won;Moon, In-Hyuk;Sung, So-Young;Lee, Mynug-Joon;Chu, Jun-Uk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1268-1271
    • /
    • 2005
  • This paper proposes a compact-sized surface myoelectric sensor for myoelectric hand prosthesis. To fit the surface myoelectric sensor in the socket of the myoelectric hand prosthesis, the sensor should be a compact size. The surface myoelectric sensor is composed of a skin interface and a single processing circuit that are mounted on a single package. Since the skin interface has one reference and two input electrodes, and the reference electrode is located in middle of two input electrodes, we propose two types of sensors with the circle- and bar-shaped reference electrode, but all input electrodes are the bar-shaped. The metal material used for the electrodes is the stainless steel (SUS440) that endures sweat and wet conditions. Considering conduction velocity and median frequency of the myoelectric signal, we select the inter-electrode distance (IED) between two input electrodes as 18mm, 20mm, and 22 mm. The signal processing circuit consists of a differential amplifier with band pass filter, a band rejection filter for rejecting 60Hz power-line noise, amplifiers, and a mean absolute value circuit. We evaluate the proposed sensor from the output characteristics according to the IED and the shape of the reference electrode. From the experimental results we show the surface myoelectric sensor with the 18mm IED and the bar-shaped reference electrode is suitable for the myoelectric hand prosthesis.

  • PDF