• 제목/요약/키워드: Two-dimensional temperature

검색결과 1,047건 처리시간 0.028초

3상 GIS Busbar내 자연대류에 대한 수치해석적 연구 (A Numerical Study on Natural Convection in A Three-Phase GIS Busbar)

  • 왕양양;한성진;김중경;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.107-108
    • /
    • 2008
  • The temperature rise of GIS (Gas Insulated Switchgear) busbar system is a vital factor that affects its performance. In this paper, a two-dimensional model is presented by commercial code CFX11 for the evaluation of natural convection in the busbar system. In the model, SF6 (Sulfur Hexafluoride) is used to insulate the high voltage device and improves the heat transfer rate. The power losses of a busbar calculated by the magnetic field analysis are used as the input data to predict the temperature rise by the nature convection analysis. The heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material property and model geometry for the natural convection. The temperatures of the tank and conductors from CFX simulation and the experiment were compared. The results show a good agreement. In the future, we will calculate the 3-D model and try to reduce the temperature by adjusting some dimensional parameters.

  • PDF

바닥복사 난방공간의 효율적인 난방제어방법 (The Effective Heating Control Method of the Radiant Floor Heating System)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.317-329
    • /
    • 1996
  • By describing the floor slab of a radiant heating system as a one dimensional transient heat exchanger problem, a dynamic analysis model to incorperate with TRNSYS program was developed and their results were compared with experimental results. Results showed that the both of TPOC(Two Parameter On-off Control) and TPSC(Two Parameter Switching Control) method using room air temperature and floor surface temperature as the control parameters does not maintain room air and floor surface temperature exactly at the setting temperatures. But TPSC method is a better candidate for the temperature regulations of room air and floor surface temperature than TPOC method which can keep on the upper and lower limit temperature according to outside temeperature and wall structure etc. And better thermal circumstance can be given by TPSC method than On-off and TPOC method and the overheating which can be occured at the radiant floor heating system with on-off heating control will be reduced.

  • PDF

저온가스 저장공동 주위암반의 온도분포 예측에 관한 연구 (The Estimation of Temperature distribution around Gas Storage Cavern)

  • 이양;이승도;문현구
    • 터널과지하공간
    • /
    • 제14권1호
    • /
    • pp.16-25
    • /
    • 2004
  • 저온가스를 지하공동에 저장하는 것은 안전과 운영 측면에서 많은 장점이 있다. 그러나 저장된 극저온가스는 주변암반의 온도변화를 야기하여 공동의 안정성에 영향을 줄 수 있다. 따라서 성공적인 저장공동의 건설을 위해서는 건설 초기에 공동 주위암반의 온도분포를 정확히 예측하는 것이 필수적이다. 본 연구의 목적은 저장공동 주변의 온도분포를 예측할 수 있는 이론해의 개발과 평가이다. 이를 위해, 공동의 형상을 단순화하고 비정상 열전도 이론을 적용하여 이론해를 도출하였다. 이론해의 적용성을 평가하기 위해서 이론해와 유한 차분 해석프로그램인 FLAC을 이용한 수치해석을 이용해 저장공동 주변의 2차원$.$3차원 온도분포를 추정하여 그 결과를 비교하였다. 또한, 공동의 크기에 대한 영향도 조사되었다.

가상 반사압력을 이용한 사출성형의 준3차원 유동해석 (The Quasi 3-D Flow Simulation in injection Molding Using Virtual Pressure Reflection)

  • 이호상;신효철
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1294-1306
    • /
    • 1992
  • 본 연구에서는 IBPR 방법을 바탕으로 캐비티형상이 동일평면상에 있지 않은 경우에 대한 준3차원 유동해석과 주입기구가 있는 경우에 대한 유동해석을 별도로 수 행하여 실험결과와 비교하였다.해석결과는 실험과 잘 일치하였으며 그를 통해 앞서 개발한 IBRP방법이 보다 일반적인 경우에서의 캐비티 유동해석으로 확장, 응용될 수 있음을 확인할 수 있었다.

Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

  • Soliman, Ahmed E.;Eltaher, Mohamed A.;Attia, Mohamed A.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.85-96
    • /
    • 2018
  • This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

의복과 인체의 공기층에 관한 자연대류 특성 (Natural Convection for Air-Layer between Clothing and Body Skin)

  • 지명국;배강열;정한식;정효민;추미선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.648-653
    • /
    • 2001
  • This study represents the numerical analysis of natural convection of a microenvironments with a air permeability in the clothing air-layer. The clothing air layer of shoulder and arm was used for numerical analysis model. As a numerical analysis method, we adopted a finite volume method for two-dimensional laminar flow, and analyzed the flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As a temperature boundary conditions, we considered that a body skin has a high temperature with $34^{\circ}C$ the environmental temperatures are $5,\;15\;and\;25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity were showed that two large cells were. formed at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decrease, the heat transfer was decreased rapidly.

  • PDF

고온초전도 동기 전동기 (High Temperature Superconducting Synchronous Motor)

  • 조영식;흥정표;권영길;류강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.574-576
    • /
    • 2001
  • This paper deals with High Temperature Superconducting (HTS) Motor, which have two characteristics: the HTS magnet with iron plates as field coil, and the solid nitrogen $(SN_2)$ as a cryogen. The HTS magnet has iron plates to achieve the maximum current-carrying capacity and the simple shape that can easily be wound and jointed. The HTS magnet with iron plates, magnet optimized current distribution, and initial magnet are presented through 3 Dimensional Finite Element Analysis (3D FEA), manufacturing and testing these magnets. And, it is employed $SN_2$ for keep the operating temperature of HTS synchronous motor. To make the liquid nitrogen $(LN_2)$ of $SN_2$, Gas helium (GHe) passes into the heat exchanger and cools its own temperature. Two types of heat exchangers are designed and manufactured to make the $SN_2$, and each of the temperature characteristics is compared.

  • PDF

GENERALIZED THERMOELASTICITY WITH TEMPERATURE DEPENDENT MODULUS OF ELASTICITY UNDER THREE THEORIES

  • Ezzat, M.;Zakaria, M.;Abdel-Bary, A.
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.193-212
    • /
    • 2004
  • A new model of generalized thermoelasticity equations for isotropic media with temperature-dependent mechanical properties is established. The modulus of elasticity is taken as a linear function of reference temperature. The present model is described both generalizations, Lord Shulman (L-S) theory with one relaxation time and Green-Lindsay (G-L) with two relaxation times, as well as the coupled theory, instantaneously. The method of the matrix exponential, which constitutes the basis of the state space approach of modern control theory, applied to two-dimensional equations. Laplace and Fourier integral transforms are used. The resulting formulation is applied to a problem of a thick plate subject to heating on parts of the upper and lower surfaces of the plate that varies exponentially with time. Numerical results are given and illustrated graphically for the problem considered. A comparison was made with the results obtained in case of temperature-independent modulus of elasticity in each theory.

투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성 (Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability)

  • 지명국;배강렬;정효민;정한식;추미선
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

범용 구조해석 프로그램의 주물 열변형 해석에의 적용성 (Application of Commercial FEM Code to Coupled Analysis of Casting Deformation)

  • 김기영;김정태;최정길
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.192-199
    • /
    • 2002
  • Dimensional defects of castings are mainly due to the stresses and strains caused by a nonuniform temperature distribution and phase transformation during solidification and cooling, and by mechanical constraint between the mold and casting. It is, however, nearly impossible to trace movements of the casting and mold during solidification and cooling by experimental measurements for castings with complex shape. Two and three dimensional deformation analyses of the casting and the mold were performed using commercial finite element code, MARC. It was possible to calculate deformation and temperature distribution in the casting and mold simultaneously. Cooling curves of the casting obtained by calculation were close to that measured in the field since it was possible to treat latent heat evolution of the casting which could be divided into two parts, primary and eutectic parts. Mold bent inward just after pouring due to the temperature gradient across the mold thickness, and mold returned to its previous position with time. Plastic deformation occurred at the part of the casting where solidification was slow.