• 제목/요약/키워드: Two-dimensional spectroscopy

검색결과 179건 처리시간 0.033초

Structure-based Functional Discovery of Proteins: Structural Proteomics

  • Jung, Jin-Won;Lee, Weon-Tae
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.28-34
    • /
    • 2004
  • The discovery of biochemical and cellular functions of unannotated gene products begins with a database search of proteins with structure/sequence homologues based on known genes. Very recently, a number of frontier groups in structural biology proposed a new paradigm to predict biological functions of an unknown protein on the basis of its three-dimensional structure on a genomic scale. Structural proteomics (genomics), a research area for structure-based functional discovery, aims to complete the protein-folding universe of all gene products in a cell. It would lead us to a complete understanding of a living organism from protein structure. Two major complementary experimental techniques, X-ray crystallography and NMR spectroscopy, combined with recently developed high throughput methods have played a central role in structural proteomics research; however, an integration of these methodologies together with comparative modeling and electron microscopy would speed up the goal for completing a full dictionary of protein folding space in the near future.

Thermal Chemical Vapor Deposition of Graphene Layers

  • Kwon, Kyoeng-Woo;Do, Woo-Ri;Hwang, Jinha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.644-644
    • /
    • 2013
  • Graphene is a two-dimensional sp2 layer material. Despite the short history in the empirical synthesis of the graphene layers, the academic/industrial unique features have brought highly significant interest in research and development related to graphene-related materials. In particular, the electrical and optical performances have been targeted towards pre-existing microelectronicand emerging nanoelectronic applications. The graphene synthesis relies on a variety of processing factors, such as temperature, pressure, and gas ratios involving H2, CH4, and Ar, in addition to the inherent selection of copper substrates. The current work places its emphasis on the role of experimental factors in growing graphene thin films. The thermally-grown graphene layers are characterized using physical/chemical analyses, i.e., four point resistance measurements, Raman spectroscopy, and UV-Visible spectrophotometry. Ultimately, an optimization strategy is proposed in growing high-quality graphene layers well-controlled through empirical factors.

  • PDF

FABRY-PEROT 분광기의 특성과 천문학의 적용 (FABRY-PEROT SPECTROMETER IN ASTRONOMY)

  • 박수종
    • 천문학논총
    • /
    • 제15권spc1호
    • /
    • pp.127-132
    • /
    • 2000
  • The purposes of spectroscopy in astronomy are to measure the radiation flux of the spectroscopic emission or absorption line and to measure the dynamical parameters of the line profile. In order to use an appropriate instrument for the scientific purpose, we need to understand the characteristics of various spectrometers, e.g., a prism spectrometer, a grating spectrometer, and a Fabry-Perot spectrometer (FPS), which are being used in ultra-violet, optical, and infrared bands. The Fabry­Perot spectrometer is not very popular compared to the grating spectrometer, because of its complex and tricky operations. The Fabry-Perot spectrometer, however, can get a two-dimensional image at one exposure, so we can study radiation mechanisms and dynamical properties of extended sources, e.g., clusters, nebula, and galaxies.

  • PDF

Investigation of Sensitivity Distribution in THz Metamaterials Using Surface Functionalization

  • Cha, Sung Ho;Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.566-570
    • /
    • 2019
  • To investigate dependence of the sensitivity of THz metamaterials on the position of target dielectric materials, we functionalized the metamaterial gap with an adhesive polymer. A shift in resonance frequency occurs when polystyrene microbeads are deposited in the gap of the metamaterial's metal resonator pattern, while little change is observed when they are deposited on other areas of the metasurface. A two-dimensional mapping of the sensitivity, with a grid size of 1 ㎛, is obtained from a finite-difference time-domain simulation: The frequency shift is displayed as a function of the position of a target dielectric cube. The resulting sensitivity distribution clearly reveals the crucial role of the gap in sensing with metamaterials, which is consistent with the electric field distribution near the gap.

ADSORPTION OF ATOMIC-HYDROGAN ON THE Si(100)-(2$\times$l)-SB SURFACE STUDIED BY TOF-ICISS/LEED

  • Ryu, Jeong-Tak;Kui, Koichiro;Katayama, Mitsuhiro;Oura, Kenjiro
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.884-890
    • /
    • 1996
  • We have investigated a structural change of Si(100)-($2 \times 1$)-Sb surface caused by atomic hydrogen adsorption at room temperature using time-of-flight impact collision ion scattering spectroscopy (TOF-ICISS) and low energy electron diffraction (LEED). We found that when atomic hydrogen adsorbs on the Si(100)-($2 \times 1$)-Sb surface, (1) the partial desorption of Sb atoms from the Si(100) surface occurs even at room temperature, (2) the rest Sb atoms are displaced from their original positions and form an almost two-dimensional layer with dispersive distribution of Sb atoms, and (3) the structural transformation into the Si(100)-($1 \times 1$)-H periodicity is induced by the formation of the $1 \times 1$-H dihydride phase on the Si substrate.

  • PDF

Fabrication of Polydiacetylene Nanowire Using Nanotransfer Molding

  • Cho, Bo-Ram;Dang, Jeong-M.;Sung, Myung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.282-282
    • /
    • 2010
  • We report a new method of fabrication of polydiacetylene nanowire using liquid bridge-mediated nanotransfer molding (LB-nTM), a direct patterning method for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas with various materials from a molder to a substrate via a liquid bridge between them. First, we fabricate assembled diacetylene monomer nanowire on the substrate then make it polymerize using 254nm UV-light irradiation. The Polydiacetylene nanowires have been investigated by UV-visible absorption spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM).

  • PDF

Novel Antibiotic Peptides, Tylopeptins A and B, from Tylopilus neofelleus: Isolation, Identification, and Biological Activity

  • Lee, Sang-Jun;Yun, Bong-Sik;Cho, Duk-Hyun;Yoo, Ick-Dong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.133-133
    • /
    • 1998
  • Tylopeptins A and B are novel peptides from methanol extract of fruit body of mushroom, Tylopilus neofelleus, These novel peptides were isolated by reverse-phase HPLC. And they have been shown to consist of one acetylated N -terminal residue, fourteen amino acids, and leucinol, C-terminal amino alcohol. Sequencial determination and complete 1H and 13C resonance assignments were based on positive ion F AB mass spectroscopy and two dimensional NMR techniques using HOHAHA, ROSEY, HMQC, and HMBC. These compounds are active against some Gram-positive bacteria, but inactive against phathogenic fungi and Gram-negative bacteria.

  • PDF

Carbon Nanoscrolls from CVD Grown Graphene

  • Jang, A-Rang;Shin, Hyeon-Suk;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.574-574
    • /
    • 2012
  • We report a simple way of fabricating high-quality carbon nanoscrolls (CNSs) by taking advantage of strain relief due to large difference in strain at the interface of graphene and underlying layer. This method allows strain-controlled self rolling-up of monolayer graphene during etching process at predefined positions on SiO2/Si substrates by photolithography. The size and the length of the CNSs can be easily controlled by adjusting the thickness of the underlying layer and by pre-patterning. Raman spectroscopy studies show that the CNSs is free of significant defects, and the electronic structure and phonon dispersion are slightly different from those of two-dimensional graphene. The preparation of high-quality CNSs may open up new opportunities for both fundamental and applied research of CNSs.

  • PDF

Fabrication of Single Crystal Poly(3,4-ethylenedioxythiophene) Nanowire Arrays

  • Cho, Bo-Ram;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.537-537
    • /
    • 2012
  • We have studied a fabrication of vapor phase polymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays for the first time. The vapor-phase polymerization (VPP) technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates, including on the nanoscale, or prepare thin films of self-assembled molecules, micropatterns, or modified microstructures of pure conducting polymers. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is for the arrayed formation of two- or three-dimensional structures with feature sizes as small as tens of nanometers over large areas up to 4 inches across and is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been fabricated to single crystal PEDOT nanowires investigated Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Synthesis and Characterization of Crosslinked Polyacrylates Containing Cubane and Silyl Groups

  • Mahkam Mehrdad;Assadi Mohammad;Mohammadzadeh Rana
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.34-37
    • /
    • 2006
  • Attaching the organosilyl groups to macromolecular chains of 2-hydroxyethyl methacrylate (HEMA) should lead to important modifications of polymer properties. t-$BuMe_{2}Si$ and cubane-l, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The silyl-linked HEMA is abbreviated as TSMA, while cubane-l ,4-dicarboxylic acid (CDA) linked to two HEMA groups is the cross-linking agent (CA). Free radical cross-linking copolymerization of TSMA and HEMA with various ratios of CA as the cross-linking agent was carried out at 60-70$^{circ}C$. The compositions of the cross-linked, three-dimensional polymers were determined by FTIR spectroscopy. The glass transition temperature ($T_{g}$) of the network polymers was determined calorimetrically. The $T_{g}$ of the network polymer increased with increasing cross-linking degree.