• Title/Summary/Keyword: Two-dimensional spectroscopy

Search Result 179, Processing Time 0.021 seconds

Coherent Two-Dimensional Optical Spectroscopy

  • Cho, Min-Haeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1940-1960
    • /
    • 2006
  • Theoretical descriptions of two-dimensional (2D) vibrational and electronic spectroscopy are presented. By using a coupled multi-chromophore model, some examples of 2D spectroscopic studies of peptide solution structure determination and excitation transfer process in electronically coupled multi-chromophore system are discussed. A few remarks on perspectives of this research area are given.

Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

  • Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1345-1350
    • /
    • 2003
  • Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra.

Two Dimensional Electronic Spectroscopy

  • Fleming, Graham R.;Yang, Min-O;Agarwal, Ritesh;Prall, Bradley S.;Kaufman, Laura J.;Neuwahl, Fred
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1081-1090
    • /
    • 2003
  • Two different electronically resonant two-dimensional spectroscopies are described. The first, two-color photon echo peak shift spectroscopy, is sensitive to correlations in transition frequency between the initial and probed (final) states. It provides new insight into the mechanism of ultrafast solvation and should prove useful for characterizing dynamics in inhomogeneous systems in general. The second technique, fifth order threepulse scattering, contains two coherence periods whose durations are controlled. The entire two-dimensional surface was recorded for a dye molecule in dilute solution and a photosynthetic light-harvesting complex. The data provide insight into the short-time dynamics of solvation and exciton relaxation, respectively.

Thermal Behavior of Langmuir-Blodgett Film of Poly(tert-butyl methacrylate) by Principal Component Analysis Based Two-Dimensional Correlation Spectroscopy

  • Jung, Young-Mee;Kim, Seung-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2027-2032
    • /
    • 2005
  • This paper demonstrates details of thermal behavior of Langmuir-Blodgett (LB) film of poly(tert-butyl methacrylate) (PtBMA) by using the principal component analysis based two-dimensional correlation spectroscopy (PCA2D) through eigenvalue manipulating transformation (EMT). By uniformly lowering the power of a set of eigenvalues associated with the original data, the smaller eigenvalues becomes more prominent and the subtle contribution from minor components is now highlighted much more strongly than the original data. Thus, the subtle difference of thermal behavior of LB film of PtBMA from minor components, which is not readily detectable in the conventional 2D correlation analysis, is much more noticeable than the original data. PCA2D correlation spectra with EMT operation for the temperature-dependent IR spectra of LB film of PtBMA reveal the hidden property of phase transition processes during heating.

Angle-Resolved Photoemission Spectroscopy: Momentum-Space Microscope

  • Hwang, Chan-Cuk
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.115-118
    • /
    • 2015
  • In this review paper, I'd like to introduce the basics of angle-resolved photoemission spectroscopy (ARPES) and some of my results taken at the Pohang Accelerator Laboratory (PAL), the only synchrotron radiation in South Korea. The results show that ARPES is very useful, in particular, for studying two-dimensional materials. It looks like a microscope in momentum space similar to transmission electron microscope imaging atoms in real space.

Extracting Frequency-Frequency Correlation Function from Two-Dimensional Infrared Spectroscopy: Peak Shift Measurement

  • Kwak, Kyung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3391-3396
    • /
    • 2012
  • Two-dimensional infrared (2D-IR) spectroscopy can probe the fast structural evolution of molecules under thermal equilibrium. Vibrational frequency fluctuation caused by structural evolution produced the time-dependent line shape change in 2D-IR spectrum. A variety of methods has been used to connect the evolution of 2D-IR spectrum with Frequency-Frequency Correlation Function (FFCF), which connects the experimental observables to a molecular level description. Here, a new method to extract FFCF from 2D-IR spectra is described. The experimental observable is the time-dependent frequency shift of maximum peak position in the slice spectrum of 2D-IR, which is taken along the excitation frequency axis. The direct relation between the 2D-IR peak shift and FFCF is proved analytically. Observing the 2D-IR peak shift does not need the full 2D-IR spectrum which covers 0-1 and 1-2 bands. Thus data collection time to determine FFCF can be reduced significantly, which helps the detection of transient species.

The Study of Two-dimensional Chemical Distribution about Soil using Laser Spectroscopy (레이저 분광법을 활용한 토양 2차원 화학적 분포도 검출 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • Laser-Induced Breakdown Spectroscopy (LIBS) which a plasma is irradiated at a specific wavelength depending on the material when a high-energy laser is irradiated, and a Raman spectroscopy which measures rotation and vibration in molecules as light-scattering phenomenon occurs, are attracting attention as a space exploration technology because of the advantages of high accuracy and real-time analysis, and the ability to perform long-range detection. In this study, the tendency of the laser spectrum according to the change of the soil component was analyzed by laser spectroscopy and the two - dimensional chemical distribution was conducted based on the trend of laser spectrum. We have also established the environment of Mars (4-7 torr) and lunar atmosphere (<1 torr) in experimental setup, to prove that it is possible to measure by difference of soil chemical composition using LIBS and Raman spectroscopy even in artificial space environment.

Monitoring Kinetics Using Near Infrared Spectra and Two-dimensional Correlation Spectroscopy

  • Berry, R. James;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1282-1282
    • /
    • 2001
  • Near Infrared (NIR) spectra has long been used in industry to monitor rates of reactions via calculation of analyte concentrations. However, the kinetic information is inherent in the data through spectral ratios. Two-dimensional correlation spectroscopy (2D-COS) is a spectral method that is based on changes (e.g. concentration) in time and is therefore uniquely suited for reaction monitoring. This method is especially useful in the understanding of how the reaction(s) proceeds. We will show the application of 2D-COS to synthetic kinetic data from different reaction orders to illustrate the method. We will then show application to real reactions of various orders. Finally, we will illustrate how 2D-COS will be of specific interest to developing optimized industrial reactions.

  • PDF