• Title/Summary/Keyword: Two-dimensional order

Search Result 1,947, Processing Time 0.029 seconds

Analysis of Steady Flow Around a Two-Dimensional Body Under the Free Surface Using B-Spline Based Higher Order Panel Method (B-Spline 기저 고차경계요소법에 의한 자유수면하의 2차원 물체주위 유동해석)

  • Jae-Moon Lew;Yang-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • A two-dimensional higher order panel method using B-splines has been developed to overcome the disadvantages of the low order panel method and to obtain more accurate solution. The sources and the normal dipoles are distributed on both the body and the free surface. Instead of applying the upwind finite difference schemes to satisfy the linearized free surface and the radiation condition, the derivatives of the basis functions of the B-splines are directly applied to the linearized free surface condition. Numerical damping in the Dawson's method are avoided in the Present computations. In order to validate the present method, numerical computations are carried out for a submerged cylinder and a two-dimensional hydrofoil steadily moving beneath a free surface. The numerical results show that fast convergence and better accuracies have been achieved by the present method.

An Interference Avoidance Method Using Two Dimensional Genetic Algorithm for Multicarrier Communication Systems

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.486-495
    • /
    • 2013
  • In this article, we suggest a two-dimensional genetic algorithm (GA) method that applies a cognitive radio (CR) decision engine which determines the optimal transmission parameters for multicarrier communication systems. Because a CR is capable of sensing the previous environmental communication information, CR decision engine plays the role of optimizing the individual transmission parameters. In order to obtain the allowable transmission power of multicarrier based CR system demands interference analysis a priori, for the sake of efficient optimization, a two-dimensionalGA structure is proposed in this paper which enhances the computational complexity. Combined with the fitness objective evaluation standard, we focus on two multi-objective optimization methods: The conventional GA applied with the multi-objective fitness approach and the non-dominated sorting GA with Pareto-optimal sorting fronts. After comparing the convergence performance of these algorithms, the transmission power of each subcarrier is proposed as non-interference emission with its optimal values in multicarrier based CR system.

Visual depth perception of three dimensinal images and two dimensional images (입체영상과 평면영상의 심도 인지량에 관한 연구)

  • Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.11-22
    • /
    • 1991
  • This paper aims to examine experimentally the difference of subjectively measured degree of depth between two dimensional (2D) and three dimensional (3D) images. For this paper, two experiments were conducted; in the first experiment, the subjects were asked to estimate the distance between two objects presented with different depths, while in the second experiment, the subjects' role was to rank three objects in the order of distance from the screen. In both experiments, the objects were presented either in 2D or 3D images. The results of the experiments show that the use of 3D images can induce more accurate and more stable estimates of distance than the use of 2D images. However, it is also noted that the absolute degree of depth is not the unique criteria utilized by the subjects for the distinction of small differences of depth.

  • PDF

Numerical analysis on two-dimensional vortex merger (이차원 와류 병합에 대한 수치적 연구)

  • Park, Sanghyun;Sheen, DongJin;Chang, Kyoungsik;Kwag, DongGi
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • During flight of the aircraft, the vortex merging phenomenon appears under the certain condition between co-rotating vortices which were generated at the wing tip and lifting-surface. And then these merged vortices at both sides show counter-rotating pattern to affect on the downstream of the aircraft. In this paper, the numerical simulations are conducted assuming this phenomenon in two-dimensional co-rotating or counter-rotating vortices pairs. Two-dimensional incompressible Navier-Stokes equations were converted into Vorticity-Streamfunction form and the Galerkin spectral method was adopted. The third order Runge-Kutta method was used for time integration. The effects on the vortex merger and degree of vortex merger were investigated according to time, Reynolds number, and changes in the distance between two vortices.

A numerical study on ship-ship interaction in shallow and restricted waterway

  • Lee, Sungwook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.920-938
    • /
    • 2015
  • In the present study, a numerical prediction method on the hydrodynamic interaction force and moment between two ships in shallow and restricted waterway is presented. Especially, the present study proposes a methodology to overcome the limitation of the two dimensional perturbation method which is related to the moored-passing ship interaction. The validation study was performed and compared with the experiment, firstly. Afterward, in order to propose a methodology in terms with the moored-passing ship interaction, further studies were performed for the moored-passing ship case with a Reynolds Averaged Navier-Stokes (RANS) calculation which is using OpenFOAM with Arbitrary Coupled Mesh Interface (ACMI) technique and compared with the experiment result. Finally, the present study proposes a guide to apply the two dimensional perturbation method to the moored-passing ship interaction. In addition, it presents a possibility that the RANS calculation with ACMI can applied to the ship-ship interaction without using a overset moving grid technique.

TWO-DIMENSIONAL STAGNATION FLOW TOWARD A PLANE WALL COATED WITH MAGNETIC FLUID OF UNIFORM THICKNESS (균일 두께의 자성유체 피막이 있는 평면 벽을 향하는 2차원 정체 유동)

  • Ko, Hyung-Jong;Kim, Kyoung-Hoon;Kim, Se-Woong
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.20-27
    • /
    • 2007
  • Two-dimensional stagnation flow toward a plane wall coated with magnetic fluid of uniform thickness is investigated. The flow field is represented as a similarity solution of the Navier-Stokes equation for this incompressible laminar flow. The resulting third order ordinary differential equation is solved numerically by using the shooting method and by determining two shooting parameters so as to satisfy the boundary and interface conditions. Features of the flow including streamline patterns are investigated for the varying values of density ratio, viscosity ratio, and Reynolds number. An adverse flow with double eddy pair in magnetic fluid region is found to emerge as the Reynolds number becomes higher than a threshold value. The results for the interface velocity, interface and wall shear stress, and boundary layer and displacement thickness are also presented.

Structures of Two-dimensional Ring Polymer Solutions using Bond Fluctuation Model

  • Shin, Donghan;Lee, Eunsang;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.155-162
    • /
    • 2016
  • This study attempts to reveal structures of two-dimensional ring polymer solutions in various polymer concentrations ranging from dilute to concentrated regime. Polymer sizes, single molecule structure factors, bond correlation functions and monomer density distribution functions from center of mass are given in order to clarify the polymer structures. Our study shows that a ring in dilute solution maintain pseudo-circular structure with self-avoiding walk (SAW) statistics, and it seems to be composed of two connecting SAW linear chains. In semidilute solutions, ring polymers are not entangled with each other and adopt collapsed configurations. Such assumption of collapsed structures in the semidilute regime gives an overlap concentration of ${\varphi}^*{\sim}N^{-1/2}$ where N is degree of polymerization. By normalizing the polymer concentration by these overlap concentration, we find universal behaviors of polymer sizes and structure factors regardless of N.

  • PDF

Control of Boundary Layer Flow Transition via Distributed Reduced-Order Controller

  • Lee, Keun-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1561-1575
    • /
    • 2002
  • A reduced-order linear feedback controller, which is used to control the linear disturbance in two-dimensional plane Poiseuille flow, is applied to a boundary layer flow for stability control. Using model reduction and linear-quadratic-Gaussian/loop-transfer-recovery control synthesis, a distributed controller is designed from the linearized two-dimensional Navier-Stokes equations. This reduced-order controller, requiring only the wall-shear information, is shown to effectively suppress the linear disturbance in boundary layer flow under the uncertainty of Reynolds number. The controller also suppresses the nonlinear disturbance in the boundary layer flow, which would lead to unstable flow regime without control. The flow is relaminarized in the long run. Other effects of the controller on the flow are also discussed.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Two-Dimensional Adaptive Mesh Generation Algorithm and its Application with Higher-Order Compressible Flow Solver

  • Phongthanapanich, Sutthisak;Dechaumphai, Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2190-2203
    • /
    • 2004
  • A combined procedure for two-dimensional Delaunay mesh generation algorithm and an adaptive remeshing technique with higher-order compressible flow solver is presented. A pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference splitting scheme with a modified multidimensional dissipation for high-speed compressible flow analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions such as the spurious bump of the carbuncle phenomenon observed from the bow shock of the flow over a blunt body and the oscillation in the odd-even grid perturbation in a straight duct for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. The performance of the combined procedure is evaluated on unstructured triangular meshes by solving several steady-state and transient high-speed compressible flow problems.