• Title/Summary/Keyword: Two-dimensional model

Search Result 3,847, Processing Time 0.03 seconds

Determination of Two Dimensional Axisymmetric Finite Element Model for Reactor Coolant Piping Nozzles (원자로 냉각재 배관 노즐의 2차원 축대칭 유한요소 모델 결정)

  • Choi, S.N.;Kim, H.N.;Jang, K.S.;Kim, H.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.432-437
    • /
    • 2000
  • The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The the radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively.

  • PDF

Performance estimation model of the three-dimensional pointing tasks in virtual environment systems (가상환경에서의 3차원 포인팅작업 성능평가 모형)

  • 박재희;박경수
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.253-258
    • /
    • 1996
  • Virtual reality environment system is expected to be used as a new user interface tool oweing to its high immersiveness and high interactivity. To use VR interface effectively, we should identify the characteristics of the three-dimensional control tasks as if we did in two-dimensional graphic user interface environments. As a first step, we validated Fitts'law for the three-dimensional pointing tasks with the two input devices, Spaceball and Spacemouse. Different from the two-dimensional control tasks, VR pointing tasks needed inclusion of a new variable, size of the moving object, to Fitts'law. The modified

  • PDF

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.

Quasi-Two-Dimensional Model for Floodplain Flow Simulation (준2차원 홍수범람 모형에 관한 연구)

  • Jeon, Gyeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.515-528
    • /
    • 1998
  • A quasi-two-dimensional model for simulating the flood plain flow is developed. The model consists, in general, of a multiply-connected network which combines the main channel and two-dimensional flood plain cells. The main channel flow is described by the Saint Venant equations for one-dimensional unsteady flow, and the flood plain flow by the cell continuity and river-or weir-type stage-discharge relations between flood plain cells. The implicit algorithm for unsteady flow in looped channel network is extended to incorporate the flood plain flow. To verify the performance of the model, it is applied to three test problems, and sensitivities to various model parameters are analyzed. It turns out that the present model gives more accurate result than that by Cunge (1975) as the shape of cross section becomes more complex and irregular. Not only the inundation of water from the main channel but the return flow from the flood plain is successfully simulated.

  • PDF

Multi-dimensional models for predicting the chloride diffusion in concrete exposed to marine tidal zone: Methodology, Numerical Simulation and Application

  • Yang Ding;Zi-Xi He;Shuang-Xi Zhou
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.169-178
    • /
    • 2024
  • To circumvent the constraints of time-consuming experimental methods, numerical simulation can be one of the most effective approaches to investigating chloride diffusion behaviors in concrete. However, except for the effect of the external environments, the transport direction of the chloride cannot be neglected when the concrete is exposed to the marine tidal zone, especially in certain areas of concrete members. In this study, based on Fick's second law, considering the effects of timevarying, chloride binding capacity, concrete stress state, ambient temperature, and relative humidity on chloride diffusion coefficient, the modified one-dimensional, two-dimensional, and three-dimensional novel modified chloride diffusion theoretical models were established through defining the current boundary conditions. The simulated results based on the novel modified multi-dimensional model were compared with the experimental results obtained from some previous pieces of literature. The comparing results showed that the modified multi-dimensional model was well-fitted with experimental data, confirming the high accuracy of the novel modified model. The experimental results in literature showed that the chloride diffusion in the corner area of the concrete structure cannot be simulated by a simple one-dimensional diffusion model, where it is necessary to select a suitable multi-dimensional chloride diffusion model for simulation calculation. Therefore, the novel modified multi-dimensional model established in this study has a stronger applicability for practical engineering.

Study of Superelevation of Ichon-Banpo Bend Flow in the Han River (한강 이촌-반포 만곡부의 편수위 연구)

  • Lee, Jong-Kyu;Kim, Joo-Young;Park, Hyun-Jin;Kang, Ji-Ye
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.810-814
    • /
    • 2009
  • Two dimensional steady and unsteady numerical models are applied to bend reaches of the Lower Han River and the superelevation at the Ichon-Banpo bend area of Han River was observed. The flow characteristics in the meandering river are complicated due to the effects of the centrifugal force. The centrifugal force makes the outside water surface level increase and the outside velocity decrease. To study this complex flow studying two dimensional flow is important and useful to design flood control countermeasures, the analysis of sedimentation and the site selection of intake structures. Especially, the superelevation between inside and outside of the bend should be considered to determine the height of embankment. In this study, the water surface elevations in both bank sides of the bend were measured in two reaches during floods in 2007 and 2008. And then the two-dimensional simulation using RMA-2 model was carried out. The upstream and downstream boundary conditions on bend reaches were determined by FLDWAV which is one-dimensional unsteady model. Finally, the observed data are compared with simulation results and the results of the several superelevation formulas, and the flow characteristics of the bend are discussed.

  • PDF

A Study on M / M (a, b ; ${\mu}_k$) / 1 Batch Service Queueing Model (M/M(a, b ; ${\mu}_k$)/1 배치 서비스 대기모델에 대한 연구)

  • Lee, Hwa-Ki;Chung, Kyung-Il
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.345-356
    • /
    • 1995
  • The aim of this paper is to analyze the batch service queueing model M/M(a, b ; ${\mu}_k/1$) under general bulk service rule with mean service rate ${\mu}_k$ for a batch of k units, where $a{\leq}k{\leq}b$. This queueing model consists of the two-dimensional state space so that it is characterized by two-dimensional state Markov process. The steady-state solution and performane measure of this process are derived by using Matrix Geometric method. Meanwhile, a new approach is suggested to calculate the two-dimensional traffic density R which is used to obtain the steady-state solution. In addition, to determine the optimal service initiation threshold a, a decision model of this queueing system is developed evaluating cost of service per batch and cost of waiting per customer. In a job order production system, the decision-making procedure presented in this paper can be applicable to determining when production should be started.

  • PDF

Two-Dimensional Analysis Model for Tapered Pulse Tubes (테이퍼를 갖는 맥동관의 2차원 해석모델)

  • Baek, Sang-Ho;Jeong, Eun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.668-676
    • /
    • 2000
  • A two-dimensional model for pulse tubes with tapered cross-section was proposed. Net enthalpy flow and steady mass streaming were investigated by two-dimensional analysis of mass, momentum and energy equations of the gas as well as energy conservation of the tube wall. Steady mass flux profiles show good agreement with the previous approximate solution. It was shown that steady mass streaming can be reduced by tapering a pulse tube and by increasing the length of a pulse tube. Effects of the velocity phase angle and frequency on steady mass streaming were shown.

A Two-Dimensional Simulator for Plate Forming by Line Heating (선상가열(Line Heating)에 의한 평판가공 Simulator 연구)

  • Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.191-200
    • /
    • 1992
  • In order to simulate the line heating process which is a three-dimensional transient thermo elastic plastic state, a simple modified strip model is suggested. First attempt is made to verify the validity of the model using a finite element program, and the result gives good agreement with the plate theory where conventional two-dimensional model fails totally.

  • PDF

DNAPL migration in fracture networks and its remediation

  • 이항복;지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.543-547
    • /
    • 2003
  • We applied the modified invasion percolation (MIP) model to the migration of DNAPL within a two-dimensional random fracture network. The MIP model was verified against laboratory experiments, which was conducted using a two-dimensional random fracture network model. The results showed that the MIP needs modification. To remove TCE trapped in a random fracture network, the density-surfactant-motivated removal method was applied and found very effective to remove TCE from dead-end fractures.

  • PDF