This study proposes a case based reasoning system with two dimensional reduction techniques. In this study, vertical and horizontal dimensions of the research data are reduced through hybrid feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed technique may improve the classification accuracy and outperform various optimized models of typical CBR system.
For several decades, attribute classification methods using the asymmetrical relationship between an attribute performance and the satisfaction of that attribute have been explored by numerous researchers. In particular, the Kano model, which classifies quality attributes into 5 elements using simple questionnaire and two-dimensional evaluation table, has gained popularity: Attractive, One-dimensional, Must-be, Indifferent, and Reverse quality. As Kano's model is well accepted, many literatures have introduced categorization methods using the Kano's evaluation table at attribute level. However, they applied different terminologies and classification criteria and this causes confusion and misunderstanding. Therefore, a criterion for quality classification at attribute level is necessary. This study is aimed to suggest a new attribute classification method that sub-categorizes quality attributes using 5-point ordinal point and Kano's two-dimensional evaluation table through an extensive literature review. For this, the current study examines the intrinsic and extrinsic problems of the well-recognized Kano model that have been used for measuring customer satisfaction of products and services. For empirical study, the author conducted a comparative study between the results of Kano's model and the proposed method for an e-learning case (33 attributes). Results show that the proposed method is better in terms of ease of use and understanding of kano's results and this result will contribute to the further development of the attractive quality theory that enables to understand both the customers explicit and implicit needs.
In this paper, we dealt with substantial asset analysis methodology applied to two-dimensional asset classification and qualitative evaluation method according to the business process. Most of the existent risk analysis methodology and tools presented classification by asset type and physical evaluation by a quantitative method. We focused our research on qualitative evaluation with 2-dimensional asset classification. It converts from quantitative asset value with purchase cost, recovery and exchange cost, etc. to qualitative evaluation considering specific factors related to the business process. In the first phase, we classified the IT assets into tangible and intangible assets, including human and information data asset, and evaluated their value. Then, we converted the quantitative asset value to the qualitative asset value using a conversion standard table. In the second phase, we reclassified the assets using 2-dimensional classification factors reflecting the business process, and applied weight to the first evaluation results. This method is to consider the organization characteristics, IT asset structure scheme and business process. Therefore, we can evaluate the concrete and substantial asset value corresponding to the organization business process, even if they are the same asset type.
In this paper, we propose a classification system of TV program scenes based on audio information. The system classifies the video scene into six categories of commercials, basketball games, football games, news reports, weather forecasts and music videos. Two type of audio feature set are extracted from each audio frame-timbral features and coefficient domain features which result in 58-dimensional feature vector. In order to reduce the computational complexity of the system, 58-dimensional feature set is further optimized to yield l0-dimensional features through Sequential Forward Selection (SFS) method. This down-sized feature set is finally used to train and classify the given TV program scenes using κ -NN, Gaussian pattern matching algorithm. The classification result of 91.6% reported here shows the promising performance of the video scene classification based on the audio information. Finally, the system stability problem corresponding to different query length is investigated.
인터넷은 그 급속한 성장과 더불어 점차 더 나은 서비스를 제공할 것을 요구받게 되었다. 이에 따라 차세대 인터넷 라우터들에서의 지능적인 패킷 분류 기능은 필수 불가결한 것으로 여겨지고 있다. 패킷 분류란 미리 정의된 classifier에 의거하여 입력된 패킷에 매치하는 가장 순위가 높은 룰을 찾는 과정이다. 기존에 나와있는 많은 패킷 분류 검색 구조들이 출발지, 목적지 프리픽스 필드에 기반하여 룰을 추려내는 접근 방법을 사용하고 있다. 그러나 대부분의 검색 구조들은 출발지, 목적지 프리픽스 검색을 위하여 트라이 구조에 바탕을 둔 순차적인 일차원 검색을 따르고 있으며, 매우 큰 메모리를 요구한다는 단점을 가지고 있다. 본 논문에서는 메모리를 매우 효율적으로 사용하면서도 출발지-목적지 프리픽스 쌍에 기반한 이차원 패킷 분류 구조를 제안하고자 한다. 코드워드로 구성된 이진 프리픽스 트리를 구성함으로써, 출발지 프리픽스 검색과 목적지 프리픽스 검색이 하나의 이진 트리를 통해 동시에 가능하도록 하였다. 또한 본 논문에서 제안하는 구조인 이차원 이진 프리픽스 트리는 트리 구조 내부에 비어있는 노드를 포함하고 있지 않으므로 트라이 구조가 가지고 있는 메모리의 비효율성 문제를 완전히 제거하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권11호
/
pp.4246-4267
/
2020
As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.420-437
/
2024
There are some problems in network traffic classification (NTC), such as complicated statistical features and insufficient training samples, which may cause poor classification effect. A NTC architecture based on one-dimensional Convolutional Neural Network (CNN) and transfer learning is proposed to tackle these problems and improve the fine-grained classification performance. The key points of the proposed architecture include: (1) Model classification--by extracting normalized rate feature set from original data, plus existing statistical features to optimize the CNN NTC model. (2) To apply transfer learning in the classification to improve NTC performance. We collect two typical network flows data from Youku and YouTube, and verify the proposed method through extensive experiments. The results show that compared with existing methods, our method could improve the classification accuracy by around 3-5%for Youku, and by about 7 to 27% for YouTube.
Web businesses are one of the most dynamic industries where lots of new business models are emerging while the other obsoleted ones are fading away almost every day. It is, therefore, difficult to establish a classification scheme for ever-changing web businesses. Previous researches on business models focus on classifying web businesses in one dimension which made some web sites difficult to fit into one category. We propose two dimensional classification scheme based on the means and the sources of revenue. The two dimensional classification provides more clear and broad perspectives of the web businesses and ways to identify web sites in combinations of several business models.
본 논문에서는 초고차원 자료의 다항분류를 위한 변수선별 방법에 대해 비교 연구를 진행하였다. 다항분류를 위한 변수선별 방법에는 일대일 혹은 일대다 비교를 통해 이항분류를 위한 방법을 확장시켜 적용하는 방법과 다항 반응 변수에 직접 적용할 수 있는 방법이 있다. 다항분류를 위한 변수선별 성능을 확인하기 위하여 여러가지 상황-설명변수의 꼬리가 두꺼운 경우, 신호변수와 잡음변수가 서로 연관된 경우, 결합분포상으로 연관되어 있지만 주변분포 상으로는 연관되어 있지 않은 경우, 다범주 반응변수의 분포가 불균형인 경우-을 가정하고 모의실험을 진행하였고, 실제 자료에도 적용해 보았다. 그 결과, 모형 가정을 필요로 하지 않는 방법들이 안정적인 성능을 보이는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.