• Title/Summary/Keyword: Two-dimensional Cubic Spline

Search Result 17, Processing Time 0.021 seconds

Salt and Pepper Noise Removal using 2-Dimensional Spline Interpolation (2차원 스플라인 보간법을 이용한 Salt and Pepper 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1167-1173
    • /
    • 2017
  • As the society increasingly embraces the high - tech digital information age, the field of image processing becomes progressively more branched out and becoming an imperative field. However, image data is deteriorated due to various causes during transmission and salt and pepper noise is typical. Typical methods for removing salt and pepper noise include CWMF, SWMF, and A-TMF. However, existing methods are somewhat insufficient in their ability to remove noise in salt and pepper noise environments. Therefore, in this paper, after it is determined whether noise removal is needed, the following measures were taken. If the center pixel was non-noise, the original pixel was preserved, If it was noise, we proposed a two - dimensional spline interpolation method and a median filter depending on the noise density of the local mask. For the purpose of objective judgment, we compared the results with that of existing methods and used PSNR (peak signal to noise ratio) as a judgment criterion.

Two-Dimensional Analysis of Unsteady Flow Through One Stage of Axial Turbine (II) (1단 축류 터빈의 비정상 내부유동특성에 관한 2차원 해석 (II))

  • Park, Jun-Young;Um, In-Sik;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1518-1526
    • /
    • 2001
  • In this paper, the mechanism of unsteady potential interaction and wake interaction in one stage axial turbine is numerically investigated at design point in two-dimensional viewpoint. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting (FVS) and Cubic spline interpolation is applied on zonal interface between stator and rotor. The inviscid analysis is used to embody the influence of potential interaction only and viscous analysis is used to embody the influences of both potential interaction and wake interaction at the same time. The potential-flow disturbance from the stator into a rotor passage and the periodic blockage effect of rotor produce the unsteady pressure on the blade surface in inviscid analysis. After the wake is cut by rotor, two counterrotating votical patterns flanking the wake centerline in the passage are generated. So, these phenomena magnify the unsteady pressure in viscous analysis than that in inviscid analysis. The resulting unsteady forces on the rotor, generated by the combined interaction of the two effects by potential and wake interaction, are discussed.

Automatic Mesh Generation with Quadrilateral Finite Elements (사각형 유한요소망의 자동생성)

  • 채수원;신보성;민중기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2995-3006
    • /
    • 1993
  • An automatic mesh generation scheme has been developed for finite element analysis with two-dimensional, quadrilateral elements. The basic strategies of the method are to transform the analysis domain into loops with key nodes and the loops are recursively subdivided into subloops with the use of best split lines. Finally by using the basic loop operators, the meshes are completed. In this algorithm an eight-node loop operator is proposed, which is useful in the area where the change of element size is large and the splitting criteria for subdividing the loops have also been modified to the existing algorithms. Lines, arcs, and cubic spline curves are used to define the boundaries of analysis domain. Sample meshes for several geometries are presented to demonstrate the robustness of the algorithm.

Adaptive Noise Subtraction in Auditory Evoked Field (적응 필터를 이용한 청각 자극에 의한 뇌자도 신호에서 노이즈 제거)

  • 이동훈;안창범
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.606-610
    • /
    • 2003
  • Noise subtraction using reference channel data has been used to improve signal-to-noise ratio in magnetoencephalography. In this paper, an adaptive noise subtraction model is proposed and parameters for the model are optimized. A criterion to determine an optimal update period for the filter coefficients is proposed based on the ratio of peak amplitude of evoked field (N100m) divided by the output standard deviation. Experiments are carried out using a 40 channel MEG system. From the experiments, the proposed noise subtraction method shows superior performances over existing non-adaptive methods. Two-dimensional topographic map is shown for a diagnosis with a cubic spline interpolation.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.