• Title/Summary/Keyword: Two-channel EEG monitoring software

Search Result 2, Processing Time 0.02 seconds

Development of an EEG Software for Two-Channel Cerebral Function Monitoring System (2채널 뇌기능 감시 시스템을 위한 뇌파 소프트웨어의 개발)

  • Kim, Dong-Jun;Yu, Seon-Guk;Kim, Seon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 1999
  • This paper describes an EEG(electroencephalogram) software for two-channel cerebral function monitoring system to detect the cerebral ischemia. In the software, two-channel bipolar analog EEG signals are digitized and from the signals various EEG parameters are extracted and displayed on a monitor in real-time. Digitized EEG signal is transformed by FFT(Fast Fourier transform) and represented as CSA(compressed spectral array) and DSA(density spectral array). Additional 5 parameters, such as alpha ratio, percent delta, spectral edge frequency, total power, and difference in total power, are estimated using the FFT spectra. All of these are effectively merged in a monitor and displayed in real-time. Through animal experiments and clinical trials on men, the software is modified and enhanced. Since the software provides raw EEG, CSA, DSA, simultaneously with additional 5 parameters in a monitor, it is possible to observe patients multilaterally. For easy comparison of patient's status, reference patterns of CSA, DSA can be captured and displayed on top of the monitor. And user can mark events of surgical operation and patient's conditions on the software, this allow him jump to the points of events directly, when reviewing the recorded EEG file afterwards. Other functions, such as forward/backward jump, gain control, file management are equipped and these are operated by simple mouse click. Clinical tests in a university hospital show that the software responds accurately according to the conditions of patients and medical doctors can use the software easily.

  • PDF

Simple Digital EEG System Utilizing Analog EEG Machine (아날로그 뇌파기를 응용한 간단한 디지털 뇌파 시스템)

  • Jung, Ki-Young;Kim, Jae-Moon;Jung, Man-Jae
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • Purpose : The rapid development and wide popularity of Digital EEG(DEEG) is due to its convenience, accuracy and applicability for quantitative analysis. These advantages of DEEG make one hesitate to use analog EEG(AEEG). To assess the advantage of DEEG system utilizing AEEG(DAEEG) over conventional AEEG and the clinical applicability, a DAEEG system was developed and applied to animal model Methods : Sprague-Dawley rat as status epilepticus model were used for collecting the EEG data. After four epidural electrodes were inserted and connected to 8-channel analog EEG(Nihon-Kohden, Japan), continous. EEG monitoring via computer screen was done from two rats simultaneously. EEG signals through analog amplifier and filters were digitized at digital signal processor and stored in Windows-based pentium personal computer. Digital data were sampled at a rate of 200 Hz and 12 bit of resolution. Acquisition software was able to carry out 'real-time view, sensitivity control and event marking' during continuous EEG monitoring. Digital data were stored on hard disk and hacked-up on CD-ROM for off-line review. Review system consisted of off-line review, saving and printing out interesting segment and annotation function. Results: This DAEEG system could utilize most major functions of DEEG sufficiently while making a use of an AEEG. It was easy to monitor continuously compared to Conventional AEEG and to control sensitivity during ictal period. Marking the event such as a clinical seizure or drug injection was less favorable than AEEG due to slowed processing speed of digital processor and central processing unit. Reviewing EEG data was convenient, but paging speed was slow. Storage and management of data was handy and economical. Conclusion : Relatively simple digital EEG system utilizing AEEG can be set-up at n laboratory level. It may be possible to make an application for clinical purposes.

  • PDF