• Title/Summary/Keyword: Two-Zone Modeling

Search Result 128, Processing Time 0.025 seconds

Digital Ratio Differential Relaying for Main Protection of Large Generator (대형 발전기 주보호를 위한 디지털 비율차동 계전기법)

  • Park, Chul-Won;Ban, Yu-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • An AC generator is an important component in producing an electric power and so it requires highly reliable protection relays to minimize the possibility of demage occurring under fault conditions. It is a need for research of digital generator protection system(DGPS) for the next-generation ECMS and an efficient operation of protection control system in power station. However, most of protection and control system used in power plants have been still imported as turn-key and operated in domestic. This may cause the lack of the correct understanding on the protection systems and methods, and thus have difficulties in optimal operation. In this paper, presented ratio differential relaying(RDR) is main protective element in generator protection IED. The fault detection technique, operation zone and setting value of the RDR were studied and, compared with two of the fault detection algorithm. For evaluation performance of the RDR, the data obtained from ATPDraw5.7p4 modeling was used. The proposed methods are shown to be able to rapidly identify internal fault and did not operate a miss-operation for all the external fault.

Aerodynamic Design and Analysis of a Centrifugal Compressor in a 40kW Class Turbogenerator Gas Turbine (40kW급 터보제너레이터용 원심압축기의 공력설계 및 유동해석)

  • Oh, J.S.;Yoon, E.S.;Cho, S.Y.;Oh, K.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.128-135
    • /
    • 1998
  • Procedures and results of aerodynamic design of a centrifugal compressor are presented for development of a 40kW class turbogenerator gas turbine. Specification of higher level of total pressure ratio of 4 and total efficiency of $80\%$ requires advanced methods of design and analysis. In the meanline design/analysis, a method with conventional loss modeling and a method with the two-zone model are alternately used for more reliable prediction. In the impeller blade generation, a series of Bezier curve are combined to produce meridional contours and distributions of blade camber angle and blade thickness. Intermediate profiles of blades are repeatedly produced and changed to be finally fixed through quasi-three dimensional Euler flow analysis. Three dimensional compressible turbulent flow analysis is then performed for the impeller to be confirmed in the final step of design. Satisfactory results in the aerodynamic performance are obtained, which assures that there is no need of aerodynamic re-design.

  • PDF

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

Numerical Simulation for Urban Climate Assessment and Hazard (도시기후 평가와 방재를 위한 도시기상 수치모의)

  • O, Seong-Nam
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

Computational Study of Intermetallic Reaction Propagation in Nanoscale Boron/Titanium Metallic Multilayers (보론/티타늄 나노박막다층 내 이종금속간 화학반응 전파특성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.10-17
    • /
    • 2017
  • The analytical modeling has been established on the self-propagation of intermetallic reaction in the spanwise direction of highly reactive boron and titanium nanoscale multilayers. Assuming that the reaction obeys Arrhenius kinetics, two-dimensional computations are carried out for heat and atomic species diffusion with exothermic reaction model in order to simulate the self-propagation of intermetallic reaction. The effects of bimetallic layer thickness and thickness ratio on the reaction propagation speed are tested and discussed in addition to the assessment of pre-mixing zone effects.

Model of Information Exchange for Decentralized Congestion Management

  • Song, Sung-Hwan;Jeong, Jae-Woo;Yoon, Yong-Tae;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.141-150
    • /
    • 2012
  • The present study examines an efficient congestion management system compatible with the evolving environment. The key is to build an information model shared and exchanged for marketbased solutions to alleviate congestion. Traditional methods for congestion management can be classified into two categories, i.e., the centralized scheme and the decentralized scheme, depending on the extent to which the independent system operator (ISO) is involved in market participants' (MPs) activities. Although the centralized scheme is more appropriate for providing reliable system operation and relieving congestion in near real-time, the decentralized scheme is preferred for supporting efficient market operation. The minimum set of information between the ISO and MPs for decentralized scheme is identified: i) congestion-based zone, ii) Power Transfer Distribution Factors, and iii) transmission congestion cost. The mathematical modeling of the proposed information is expressed, considering its process of making effective use of information. Numerical analysis is conducted to demonstrate both cost minimization from the MP perspective and the reliability enhancement from the ISO perspective based on the proposed information exchange scheme.

Thermal and mechanical analysis on friction stir welding of AZ31 magnesium alloy by the finite element method (유한요소법에 의한 AZ31마그네슘 합금의 마찰교반용접시 유동 및 강도 해석)

  • Kang, Dae-Min;Park, Kyoung-Do;Jung, Yung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.64-71
    • /
    • 2013
  • In this paper, finite element method was used for flow and strength analysis of AZ31 magnesium alloy under friction stir welding. The simulations were carried out by SYSWELD s/w, and the modeling of sheet was doned by unigraphics NX3 s/w. Welding variables for analysis were rotating speed and welding speed of tool. Also two-way factorial design method was applied to confirm the effect of welding variables on maximum temperature and stress of material used. From these results, the increaser welding speed of tool the decreaser maximum temperature, but the increaser maximum stress. Also the increaser rotating speed of tool the increaser maximum temperature, but the decreaser maximum stress. In addition the increaser welding speed of tool and the decreaser rotating speed of tool, the narrower heat effect zone. Finally rotating speed of tool influenced on maximum temperature more than welding speed of tool, and welding speed of tool influenced on maximum stress more than rotating speed of tool from the variance analysis.

Analysis of the Relationship of Cold Air Damming with Snowfall in the Yeongdong Region (영동 지역 한기 축적과 강설의 연관성 분석)

  • Kim, Mi-Gyeong;Kim, Byung-Gon;Eun, Seung-Hee;Chae, Yu-Jin;Jeong, Ji-Hoon;Choi, Young-Gil;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.421-431
    • /
    • 2021
  • The Yeongdong region is frequently vulnerable to heavy snowfall in winter in terms of societal and economical damages. By virtue of a lot of previous efforts, snowfall forecast has been significantly improved, but the performance of light snowfall forecast is still poor since it is very conducive to synoptic and mesoscale interactions, largely attributable to Taeback mountains and East Sea effects. An intensive observation has been made in cooperation with Gangwon Regional Meteorological Office and National Institute of Meteorological Studies in winter seasons since 2019. Two distinctive Cold Air Damming (CAD) events (14 February 2019 and 6 February 2020) were observed for two years when the snowfall forecast was wrong specifically in its location and timing. For two CAD events, lower-level temperature below 2 km ranged to lowest limit in comparisons to those of the previous 6-years (2014~2019) rawinsonde soundings, along with the stronger inversion strength (> 2.0℃) and thicker inversion depth (> 700 m). Further, the northwesterly was predominant within the CAD layer, whereas the weak easterly wind was exhibited above the CAD layer. For the CAD events, strong cold air accumulation along the east side of Taeback Mountains appeared to prevent snow cloud and convergence zone from penetrating into the Yeongdong region. We need to investigate the influence of CAD on snowfall in the Yeongdong region using continuous intensive observation and modeling studies altogether. In addition, the effect of synoptic and mesoscale interactions on snowfall, such as nighttime drainage wind and land breeze, should be also examined.

Origin and Evolution of Leucogranite of NE Yeongnam Massif from Samcheok Area, Korea (삼척지역 북동 영남 육괴에 분포하는 우백질 화강암의 기원 및 진화)

  • Cheong, Won-Seok;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.16-35
    • /
    • 2008
  • We study metamorphism of metasedimetary rocks and origin and evolution of leucogranite form Samcheok area, northeastern Yeongnam massif, South Korea. Metamorphic rocks in this area are composed of metasedimentary migmatite, biotite granitic gneiss and leucogranite. Metasedimentary rocks, which refer to major element feature of siliclastic sediment, are divided into two metamorphic zones based on mineral assemblages, garnet and sillimanite zones. According to petrogenetic grid of mineral assemblages, metamorhpic P-T conditions are $740{\sim}800^{\circ}C$ at $4.8{\sim}5.8\;kbar$ in the garnet zone and $640-760^{\circ}C$ at 2.5-4.5kbar in sillimanite zone. The leucogranite (Imwon leucogranite) is peraluminous granite which has high alumina index (A/CNK=1.31-1.93) and positive discriminant factor value (DF > 0). Thus, leucogranite is S-type granite generated from metasedimentary rocks. Major and trace element diagram ($R_1-R_2$ diagram and Rb vs. Y+Nb etc.) show collisional environment such as syn-collisional or volcanic arc granite. Because Rb/sr ratio (1.8-22.9) of leucogranites is higher than Sr/Ba ratio (0.21-0.79), leucogranite would be derived from muscovite dehydrate melting in metasedimentary rocks. Leucogranites have lower concentration of LREE and Eu and similar that of HREE relative to metasedimentary rocks. To examine difference of REEs between leucogranites and metasedimentary rocks, we perform modeling using volume percentage of a leucogranite and a metasedimenatry rock from study area and REE data of minerals from rhyolite (Nash and Crecraft, 1985) and melanosome of migmatite (Bea et al., 1994). Resultants of modeling indicate that LREE and HREE are controlled by monazites and garnet, respectively, although zircon is estimated HREE dominant in some leucogranite without garnet. Because there are many inclusions of accessary phases such as monazite and zircon in biotites from metasedimentary rocks. leucogranitic magma was mainly derived from muscovite-breakdown in metasedimenary rocks. Leucogranites can be subdivided into two types in compliance with Eu anomaly of chondrite nomalized REE pattern; the one of negative Eu anomaly is type I and the other is type II. Leucogranites have lower Eu concetnrations than that of metasedimenary rocks and similar that of both type. REE modeling suggest that this difference of Eu value is due to that of components of feldspars in both leucogranite and metasedimentary rock. The tendency of major ($K_2O$ and $Na_2O$) and face elements (Eu, Rb, Sr and Ba) of leucogranites also indicate that source magma of these two types was developed by anatexis experienced strong fractionation of alkali-feldspar. Conclusionally, leucogranites in this area are products of melts which was generated by muscovite-breakdown of metasedimenary rock in environment of continetal collision during high temperature/pressure metamorphism and then was fractionated and crystallized after extraction from source rock.

Measurement of GPR Direct Wave Velocity by f-k Analysis and Determination of Dielectric Property by Dispersive Guided Wave (f-k 분석에 의한 레이다파 속도 측정 및 레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.304-315
    • /
    • 2006
  • We have examined the applicability of f-k analysis to the GPR direct wave measurement for water content to characterize vadose zone condition. When the vadose zone consists of a dry surface layer over wet substratum, we obtained f-k spectra where most of the energy is bounded by the air and dry soil velocities. In this case, dry soil velocity was successfully estimated by using high frequency data. On the other hands, when wet soil overlies dry substratum, the f-k spectra show a contrasting response where most of the energy travels with the velocity bounded by dry and wet soil velocities. In this case, the radar waves are trapped and guided within wet soil layer, exhibiting velocity dispersion. By adopting modal propagation theory, we could formulae a simple inversion code to find two layer's dielectric constants as well as layer thickness. By inverting the velocity dispersion curve obtained from f-k spectra of synthetic modeling data, we could obtain good estimates of dielectric constants of each layer as well as first layer thickness. Moreover, we could obtain more accurate results by including the higher mode data. We expect this method will be useful to get the quantitative property of real subsurface when the field condition is similar.