• Title/Summary/Keyword: Two-Zone Model

Search Result 568, Processing Time 0.028 seconds

Improving Methods for Estimating Transportation Mode Choice Model in Busan-Ulsan Metropolitan Area (부산·울산광역권 교통수단 선택모형 구축 방법론 개선)

  • Shin, Kangwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4580-4587
    • /
    • 2014
  • This study provides an improved transportation mode choice models applicable to the Busan-Ulsan Metropolitan area by scrutinizing previous study results developed using the multinomial logit model. Although the previous model has an appropriate modeling structure in terms of the sign of coefficient estimates and goodness-of-fit, the model ignores the total number of trips and traffic congestion condition between the two zones and partially reflects zone-specific variables and choice set. Therefore, this study considered all of these modeling faults by re-constructing the representative utility functions. The modeling results show that travelers in Busan-Ulsan metropolitan area tend to choose their mode using mode-specific characteristics rather than the classical travel time and/or cost variables.

NAPL Fate and Transport in the Saturated and Unsaturated Zones Dependent on Three-phase Relative Permeability Model (3상 거동 상대투수율 선정에 따른 불포화대 및 포화대 내 NAPL 거동 특성 연구)

  • Kim, Taehoon;Han, Weon Shik;Jeon, Hyunjeong;Yang, Woojong;Yoon, Won Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.75-91
    • /
    • 2022
  • Differences in subsurface migration of LNAPL/DNAPL contaminants caused by a selection of 3-phase (aqueous, NAPL, and gas) relative permeability function (RPF) models in numerical modeling were investigated. Several types of RPF models developed from both experimental and theoretical backgrounds were introduced prior to conducting numerical modeling. Among the RPF models, two representative models (Stone I and Parker model) were employed to simulate subsurface LNAPLs/DNAPLs migration through numerical calculation. For each model, the spatiotemporal distribution of individual phases and the mole fractions of 6 NAPL components (4 LNAPL and 2 DNAPL components) were calculated through a multi-phase and multi-component numerical simulator. The simulation results indicated that both spilled LNAPLs and DNAPLs in the unsaturated zone migrated faster and reached the groundwater table sooner for Stone I model than Parker model while LNAPLs migrated faster on the groundwater table under Parker model. This results signified the crucial effect of 3-phase relative permeability on the prediction of NAPL contamination and suggested that RPF models should be carefully selected based on adequate verification processes for proper implementation of numerical models.

Behavior of continuous RC deep girders that support walls with long end shear spans

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.385-403
    • /
    • 2011
  • Continuous deep girders which transmit the gravity load from the upper wall to the lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/total depth: 1.8 < a/h < 2.5): one designed by the conventional approach using the beam theory and two by the strut-and-tie approach. The conclusions are as follows: (1) the yielding strength of the continuous RC deep girders is controlled by the tensile yielding of the bottom longitudinal reinforcements, being much larger than the nominal strength predicted by using the section analysis of the girder section only or using the strut-and-tie model based on elastic-analysis stress distribution. (2) The ultimate strengths are 22% to 26% larger than the yielding strength. This additional strength derives from the strain hardening of yielded reinforcements and the shear resistance due to continuity with the adjacent span. (3) The pattern of shear force flow and failure mode in shear zone varies depending on the amount of vertical shear reinforcement. And (4) it is necessary to take into account the existence of the upper wall in the analysis and design of the deep continuous transfer girders that support the upper wall with a long end shear span.

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Due;Park Warn-Gyu;Duong Ngoe-Hai
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.253-254
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard ${\kappa}-{\varepsilon}$ , two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derived.

  • PDF

Modelling of ZMR process for fabrication of SOI (SOI소자 제죠를 위한 ZMR공정의 모델링)

  • 왕종회;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.100-108
    • /
    • 1995
  • Heat transfer plays a critical role in determining interface location and shape in ZMR process, which is used for the fabrication of silicon - on - insulator structure. In this work, the two - dimensional pseudo - steady - state ZMR model has been developed that can simulate the heat transfer process during ZMR process. It contains the radiation, convection and conduction heat transfer and determines the interface shapes. Numerical solutions from the model include flow field in the molten zone, temperature field in the full SOl structure and the location of solid/liquid interface in the silicon thin film and silicon substrate. We examined the effects of the various system parameters on the temperature profiles and the interface shape.

  • PDF

The Premixed Flame in a Radiatively Active Porous Medium (복사열전달을 동반하는 다공성 매질내의 예혼합 화염)

  • 김정수;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.265-270
    • /
    • 1989
  • The present study considers the thermal structure variation in a porous medium caused by changing the most important radiative property of porous medium, absorption coefficient, as well as altering the physical dimension of porous medium and the equivalence ratio of premixed gas mixture. The radiation model was introduced as an unsteady differential form using the two-flux gray radiation model. The role of the conductive heat transfer through both gas phase and porous medium was found to be almost insignificant compared with that of the radiative heat transfer. The reaction zone shifted upstream and the flame thickness decreased as either the geometrical length of porous medium increased or the absorption coefficient decreased.

Effect of Partial Flow Reductions on DNAPL Source Dissolution Rate

  • Park, Eung-Yu;ParKer, Jeck C.
    • Proceedings of the KSEEG Conference
    • /
    • 2005.04a
    • /
    • pp.148-151
    • /
    • 2005
  • Field-scale DNAPL dissolution is controlled by the topology of DNAPL distributions with respect to the velocity field. A high resolution percolation model was developed and employed to simulate the distribution of DNAPL within source zones. Statistically anisotropic permeability values and capillary parameters were generated for 10${\times}$10${\times}$10 m domains at a resolution of 0.05 to 0.1 m for various statistical properties. TCE leakage was simulated at various rates and the distribution of residual DNAPL in 'fingers' and 'lenses' was computed. Variations in finger and lens geometries, frequencies, average DNAPL saturations, and overall source topology were predicted to be strongly influenced by statistical properties of the medium as well as by injection rate and fluid properties. Model results were found to be consistent with observations from controlled DNAPL release experiments reported in the literature. The computed distributions of aquifer properties and DNAPL were utilized to perform high-resolution numerical simulations of groundwater flow and dissolved transport. Simulations were performed to assess the effect of grout or foam injection in bore holes within the source zone and of shallow point-releases of fluids with various properties on dissolution in DNAPL dissolution rate, even for widely spaced injection points. The results indicate that measures that induced partial flow reductions through DNAPL source zones can significantly decrease dissolution rates from residual DNAPL. The benefit from induced partial flow reductions is two-fold: 1) local flow reduction in DNAPL contaminated zones reduces mass transfer rates, and 2) contaminant flux reductions occur due to the decrease in groundwater velocity

  • PDF

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Duc;Duong Ngoc-Hai;Park Wam-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.144-151
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard $\kappa-\epsilon$, two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derive

  • PDF