• Title/Summary/Keyword: Two-Track Control

Search Result 251, Processing Time 0.033 seconds

Autonomous Stereo Object Tracking using BMA and JTC

  • Lee, Jae-Soo;Ko, Jung-Hwan;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.79-80
    • /
    • 2000
  • General stereo vision system shows things in 3D, using two visions of left and right side. When the viewpoints of left/right sides are not in accord with each other, it gives fatigue to human eyes and prevents them from having the 3-D feeling. Also, it would be difficult to track mobile objects that are not in the middle of a screen. Therefore, the object tracking function of stereo vision system is to control tracking objects to always be in the middle of a screen while controlling convergence angles of mobile objects in the input image of the left/right cameras. In this paper, object-tracker in stereo vision system is presented which would track mobile objects by using block matching algorithm of preprocessing and JTC.

  • PDF

Development of Robot Vision Control Schemes based on Batch Method for Tracking of Moving Rigid Body Target (강체 이동타겟 추적을 위한 일괄처리방법을 이용한 로봇비젼 제어기법 개발)

  • Kim, Jae-Myung;Choi, Cheol-Woong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.161-172
    • /
    • 2018
  • This paper proposed the robot vision control method to track a moving rigid body target using the vision system model that can actively control camera parameters even if the relative position between the camera and the robot and the focal length and posture of the camera change. The proposed robotic vision control scheme uses a batch method that uses all the vision data acquired from each moving point of the robot. To process all acquired data, this robot vision control scheme is divided into two cases. One is to give an equal weight for all acquired data, the other is to give weighting for the recent data acquired near the target. Finally, using the two proposed robot vision control schemes, experiments were performed to estimate the positions of a moving rigid body target whose spatial positions are unknown but only the vision data values are known. The efficiency of each control scheme is evaluated by comparing the accuracy through the experimental results of each control scheme.

The Speed Control System of an Induction Type A.C Servomotor by Vector Control (벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구)

  • 홍순일;조철제
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.1041-1047
    • /
    • 1989
  • In recent years, a.c servomotors have been gradually replacing d.c servomotors in various high-performance applications such as machine tools and industrial robots. Inparticular, the high performance slip-frequency control of an induction motor, which is often called the vector control, is considered ane of th ebest a.c drives. In this paper, the transient state equations and vector control algorithms of an induction type servomotor are described mathematically by using the two- axis theory (d-q coordinates). According to the result of these algorithms, we scheme the speed control system for the motor in which the vector control is adopted to give high performance. Motor drive through a PWM inverter with power MOSFET is controlled so that the actual input current to the motor may track the current reference obtained from a micro-computer (8086 CPU). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is obtained for this system.

The speed control system of an induction type a.c servo motor by vector control (벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구)

  • 홍순일;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 1989
  • In recent years, a.c servo motors have been gradually replacing d.c sevo motors in various high-performance demanded aplications such as machine tools and industrial robots. In particular, the high-performance slip-frequency control of an induction motor, which is often called the vector control, is considered one of the best a.c drive. In this paper, the transient state equation and vector control algrithms of an induction motor are described mathematically by using the two-axis theory(d-q coordinates). According to the result of these algorithms, we scheme the speed control system for an induction type ac servo motor in which vector control is adopted to give tha a.c motor high performance. Motor drive is a PWM inverter using power MOS-FET, and is controlled in order to let the actual input current of the motor track the current reference obtained from a microcomputer(8086 cpu). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is possible.

  • PDF

A Novel Two-Mode MPPT Control Algorithm Based on Comparative Study of Existing Algorithms (새로운 MPPT 알고리듬의 시뮬레이션 및 실험을 통한 실증 연구)

  • Choi, J.Y.;Yu, G.J.;Jeong, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.207-212
    • /
    • 2002
  • As is well-known, the maximum power point(MPP) of PV power generation system depends on array temperature and solar insolation, it is necessary to track MPP of solar array all the time. Among various MPP control algorithms, the constant voltage control method, the perturbation and observation(P&O) method and the incremental conductance method(IncCond) have drawn many attractions due to the usefulness of each system. In this paper, the effectiveness of above mentioned three different control algorithms are thoroughly investigated via simulations and proposed efficiency evaluation method on experiment. Both the steady-state and transient characteristics of each control algorithms along with measured efficiency are analyzed, respectively. Finally, a novel MPPT control algorithm combining the constant voltage control and IncCond method for low insolation condition is proposed to improve efficiency of the 3KW PV power generation system.

  • PDF

The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning (2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론)

  • Kim, In-Sung;Seo, Jin-Woo;Ha, Dae-Wan;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, a steering control and speed control algorithm was presented for autonomous driving based on two vision sensors and road speed sign board. A car speed control algorithm was developed to recognize the speed sign by using TensorFlow, a deep learning program provided by Google to the road speed sign image provided from vision sensor B, and then let the car follows the recognized speed. At the same time, a steering angle control algorithm that detects lanes by analyzing road images transmitted from vision sensor A in real time, calculates steering angles, controls the front axle through PWM control, and allows the vehicle to track the lane. To verify the effectiveness of the proposed algorithm's steering and speed control algorithms, a car's prototype based on the Python language, Raspberry Pi and OpenCV was made. In addition, accuracy could be confirmed by verifying various scenarios related to steering and speed control on the test produced track.

A Study on the Modeling and Control of High-Speed/High-Accuracy Position Control System (고속/정밀 위치제어시스템의 모델인 및 제어에 관한 연구)

  • Park, Min-Gyu;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.399-406
    • /
    • 2001
  • This paper presents a dynamic modeling and a sliding mode controller for the high-speed/high-accuracy position control system. The selected target system is the wire bonder assembly which is used in the semiconductor assembly process. This system is a reciprocating one around the pivot point that consists of VCM(voice coil motor) as an actuator and transducer horn as a bonding tool. For the modeling elements, the sys-tem is divided into electrical circuit, magnetic circuit and mechanical system. Each system is modeled using the bond graph method and united into the full system. Two major aims are considered in the design of the controller. The first one is that the horn must track the given reference trajectory. The second one is that the controller must be realizable by using the DSP board. Computer simulation and experimental results show that the designed sliding mode controller provides better performance than the PID controller.

  • PDF

PID regulator design for robot manipulators (로봇 매니퓰레이터에 대한 비례.적분.미분 조절기 설계)

  • Nam, Heon-Seong;Kim, Cheon-joong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.647-651
    • /
    • 1992
  • This paper presents a model-based control scheme for a robot manipulator to track a desired trajectory as closely as possible in spite of a wide range of manipulator motions and parameter uncertainties of links and payload. The scheme has two components: a nominal control and a variational control. The nominal control, generated from direct calculation of the manipulator dynamics along a desired trajectory, drives the manipulator to a neighborhood of the trajectory. Then a discrete-time PID regulator is designed based on the linearized dynamic model and Linear Quadratic(LQ) method, which generates the variational control that regulates perturbations in the vicinity of the desired trajectory.

  • PDF

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.

Anti-sway Control of Crane (기중기의 흔들림 방지제어)

  • Roh, Chi-Weon;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.977-979
    • /
    • 1996
  • This paper presents an algorithm to control the undesirable sway of a suspended load in the crane system that has a trade-off between positioning the load and suppressing the sway of the load. The aim is to transport the load to a specified place with small sway angle as quickly as possible. Dynamic model is based on a simple pendulum driven by a velocity drive that is mostly used for actuating a trolley in industry. Proposed algorithm is composed of two parts : one is a off-line optimal trajectory generator, the other on-line tracking control. The former produces optimal trajectories minimizing energy under the speed constraint of velocity drive. The latter controls outputs to track the generated trajectories. Digital simulations and experiments are performed on a pilot crane to demonstrate the performance of the proposed control algorithm.

  • PDF