• Title/Summary/Keyword: Two-Track Control

Search Result 250, Processing Time 0.027 seconds

A Study on Control of Robot Manipulator by Hybrid Position / Force Control (하이브리드 위치/힘 제어방법에 의한 로봇 매니퓰레이터의 제어에 관한 연구)

  • Kim, Hyun-Suk;Gil, Jin-Soo;Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.308-310
    • /
    • 1994
  • Position control for robot manipulator may not suffice when any contacts are made between the end-effector and various environments. Therefore interaction forces must be controlled in tasks performed by robot manipulator. In general, there are two types of force control for robot manipulator. One is a stiffness control and the other is a hybrid position/force control. Stiffness control is that environment can be modeled as a spring and utilizes the desired normal force to determine the desired normal position. Hybrid position/force control, however, can be used for robot manipulator to track position and force trajectories simultaneously. This paper will compare the result of the hybrid position/force control method with that of the stiffness control method.

  • PDF

Dynamic Object Tracking of a Quad-rotor with Image Processing and an Extended Kalman Filter (영상처리와 확장칼만필터를 이용한 쿼드로터의 동적 물체 추종)

  • Kim, Ki-jung;Yu, Ho-Yun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.641-647
    • /
    • 2015
  • This paper proposes a new strategy for a quad-rotor to track a moving object efficiently by using image processing and an extended Kalman filter. The goal of path planning for the quad-rotor is to design an optimal path from the start point to the destination point. To lengthen the freight time of the quad-rotor, an optimal path is required to reduce the energy consumption. To track a moving object, the mark signed on the moving object has been detected by a camera mounted first on the quad-rotor. The center coordinates of the mark and its area are calculated through the blob analysis which is one type of image processing. The mark coordinates are utilized to obtain information on the motion direction and the area of the mark is utilized to recognize whether the object moves backward or forward from the camera on the quad-rotor. In addition, an extended Kalman filter has been applied to predict the direction and speed of the dynamically moving object. Through these schemes, it is aimed that the quad-rotor can track the dynamic object efficiently in terms of flight distance and time. Through the two different route freights of the quad-rotor, the performance of the proposed system has been demonstrated.

LOS (Line of Sight) Algorithm and Unknown Input Observer Based Leader-Follower Formation Control (LOS 알고리듬과 미지 입력 관측기에 기초한 선도-추종 대형 제어)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Seong-Jea;Hong, Sup;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • This paper proposes about decentralized control approach based Leader-Follower formation control using LOS (Line of Sight) algorithm and unknown input observer. The position of robots which is a basic information in multi-robot or single robot motion control is determined by localization algorithm fusing UPS (Ultrasonic Position System) and kinematics model. For formation control, a decentralized control approach individually installing a local controller in leader and follower robot is adopted. Leader robot is controlled to track a specified trajectory by LOS algorithm, and the other robots follow the leader by local controller based on tracking platoon level function, self-sensing data and estimated information from unknown input observer. The performance of proposed method is proven through the formation experiment of two vehicle models.

Sliding Mode Control of Two-Wheeled Welding Mobile Robot for Tracking Smooth Curved Welding Path

  • Chung, Tan-Lam;Bui, Trong-Hieu;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1094-1106
    • /
    • 2004
  • In this paper, a nonlinear controller based on sliding mode control is applied to a two-wheeled Welding Mobile Robot (WMR) to track a smooth curved welding path at a constant velocity of the welding point. The mobile robot is considered in terms of dynamics model in Cartesian coordinates under the presence of external disturbance, and its parameters are exactly known. It is assumed that the disturbance satisfies the matching condition with a known boundary. To obtain the controller, the tracking errors are defined, and the two sliding surfaces are chosen to guarantee that the errors converge to zero asymptotically. Two cases are to be considered: fixed torch and controllable torch. In addition, a simple way of measuring the errors is introduced using two potentiometers. The simulation and experiment on a two-wheeled welding mobile robot are provided to show the effectiveness of the proposed controller.

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot with Smooth Curved Welding Path

  • Bui, Trong-Hieu;Chung, Tan-Lam;Kim, Sang-Bong;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1682-1692
    • /
    • 2003
  • This paper proposes an adaptive controller for partially known system and applies to a two-wheeled Welding Mobile Robot (WMR) to track a reference welding path at a constant velocity of the welding point. To design the tracking controller, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as desired. Additionally, a scheme of error measurement is implemented on the WMR to meet the need of the controller. In this paper, the system moments of inertia are considered to be partially unknown parameters which are estimated using update laws in adaptive control scheme. The simulations and experiments on a welding mobile robot show the effectiveness of the proposed controller.

Capacity Firming for Wind Generation using One-Step Model Predictive Control and Battery Energy Storage System

  • Robles, Micro Daryl;Kim, Jung-Su;Song, Hwachang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2043-2050
    • /
    • 2017
  • This paper presents two MPC (Model Predictive Control) based charging and discharging algorithms of BESS (Battery Energy Storage System) for capacity firming of wind generation. To deal with the intermittency of the output of wind generation, a single BESS is employed. The proposed algorithms not only make the output of combined systems of wind generation and BESS track the predefined reference, but also keep the SoC (State of Charge) of BESS within its physical limitation. Since the proposed algorithms are both presented in simple if-then statements which are the optimal solutions of related optimization problems, they are both easy to implement in a real-time system. Finally, simulations of the two strategies are done using a realistic wind farm library and a BESS model. The results on both simulations show that the proposed algorithms effectively achieve capacity firming while fulfilling all physical constraints.

Basic Control Algorithm for Parallel Formation of Multi-mining Robots (다중 집광로봇의 수평대형유지를 위한 기초 알고리즘 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Hong, Sup;Kim, Sang-Bong
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.465-473
    • /
    • 2014
  • This paper proposes a formation control method by which multi-mining robots maintain a specified formation and follow a path. To secure the path tracking performance, a pure-pursuit algorithm is considered for each individual robot, and to minimize the deviation from the reference path, speed reduction in the steering motion is added. For the formation, in which two robots are parallel in a lateral direction, the robots track the specified path at a constant distance. In this way, the Leader-Follower method is adopted and the following robot knows the position and heading angle of the leader robot. Through the experimental test using two ground vehicle models, the performance is verified.

Trajectory tracking and active vibration suppression of a smart Single-Link flexible arm using a composite control design

  • Mirzaee, E.;Eghtesad, M.;Fazelzadeh, S.A.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.103-116
    • /
    • 2011
  • This paper is concerned with the trajectory tracking and vibration suppression of a single-link flexible arm by using piezoelectric materials. The dynamics of a single flexible arm with PZT patches as sensor and actuator is derived using extended Hamilton's principle. Resulting equations show that the coupled beam dynamics including beam vibration and its rigid in-plane rotation takes place in two different time scales. By using singular perturbation theory, the system dynamics is divided into two subsystems. Then, a composite control scheme is elaborated that makes the orientation of the arm track a desired trajectory while suppressing its vibration. The proposed controller has two parts: one is a tracking controller designed for the slow (rigid) subsystem, and the other one is a stabilizing controller for the fast (flexible) subsystem. The outputs considered for the system are angular position of the hub and voltage of the sensor mounted on the structure. To avoid requiring further measurements of beam vibration and also angular velocity of the hub for the fast and slow control laws, respectively, two sliding mode observers for estimating the unknown states are also designed.

IMAGE COLLECTION PLANNING ALGORITHM FOR SINGLE PASS STEREO IMAGING

  • Kang, Chi-Ho;Ahn, Sang-II;Cheon, Yee-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.255-258
    • /
    • 2008
  • The DEM (Digital Elevation Model) can be obtained from stereo image pair acquired by LEO satellite. Stereo images may consist of at least two images with different viewing angles to the imaging target for one pass or multiple passes. While each image is generally acquired from each pass in cross-track direction for multiple passes, stereo image pair in along-track direction can be acquired during one pass with attitude control capability for the pitch axis of the satellite. Single pass stereo imaging provides stereo pair image more efficiently on the fact that stereo pair image is generated with less orbit resources and less imaging time consumption. In this paper, the feasibility study result on the stereo pair image collection planning algorithm during single pass is addressed.

  • PDF

Autonomous Stereo Object Tracking using BMA and JTC

  • Lee, Jae-Soo;Ko, Jung-Hwan;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.79-80
    • /
    • 2000
  • General stereo vision system shows things in 3D, using two visions of left and right side. When the viewpoints of left/right sides are not in accord with each other, it gives fatigue to human eyes and prevents them from having the 3-D feeling. Also, it would be difficult to track mobile objects that are not in the middle of a screen. Therefore, the object tracking function of stereo vision system is to control tracking objects to always be in the middle of a screen while controlling convergence angles of mobile objects in the input image of the left/right cameras. In this paper, object-tracker in stereo vision system is presented which would track mobile objects by using block matching algorithm of preprocessing and JTC.

  • PDF