• Title/Summary/Keyword: Two-Stage Cup Drawing

Search Result 5, Processing Time 0.02 seconds

Influence of Process Design Scheme on Product Qualities in Cylindrical Cup Drawing (원형컵 드로잉의 공정설계 변화가 제품품질에 미치는 영향)

  • 이재명;김종호;원시태
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.716-723
    • /
    • 2002
  • A systematic investigation for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process desing scheme on the product qualities in cylindrical cup drawing. Three types of process design scheme were chosen in this study. Case 1 is to draw a finished cup of 50mm in diameter in one stage, Case 2 and Case 3 are redrawing the first drawn cups of 55, 65mm in diameter to the final size respectively. Through experiments the maximum drawing force in two-stage cup drawing can be reduced up to 24% as compared with that of one-stage cup drawing. In addition, Case 3 process results in better product qualities than the other two processes in terms of the distributions of thickness and hardness.

Finite Element Analysis Design of Axisymmetric Deep Drawing Process by Local Heating (국소 가열 방법을 이용한 2단계 축대칭 디프 드로잉 공정의 해석 및 설계)

  • Lee, Dong-Woo;Song, In-Seob;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 1993
  • The study is concerned with finite element analysis and design of axisymmetric deep drawing by local heating. When the bottom shape of a cup is not flat but in complex-shaped, i.e., hemispherical, the cup cannot be drawn in one or two processes in the conventional deep drawing process and the limit drawing ratio is limited as well. By introducing local heating selectively with regards to the heating position, the formability of the sheet metal can be greatly increased with the reduced number of processes. In the Process analysisthe rigid- viscoplastic finite element method is employed and the temperature effect is incorporated. Bishop's step-wise decoupled method is employed to analyze the thermomechanical interaction between deformation and heat transfer. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed for various combinations of heat application in the punch and the die. At the first stage of deep drawing stretch forming is practically carried out by firmly pressing the blankholder with the punch and the die heated at various levels of temperature. Then at the second stage the same cup is drawn for the saame or different combination of temperature. From the computation, it has thus been shown that the fromability of a cup is greatly increased in two-stage deep drawing with increased limet drawing ratio.

  • PDF

Influence of Process Design Scheme on Product Qualities in Cylindrical Cup Drawing (원형컵 드로잉의 공정설계 변화에 따른 제품품질에 미치는 영향)

  • 이재명;이상민;최영윤;류호연;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.82-85
    • /
    • 2002
  • A systematic investigation for process design in deep drawing is necessary for quality improvement of drawn cups. This study has been concentrated mainly on the influence of process design scheme on product qualities in cylindrical cup drawing. Three types of process design scheme were chosen in this study. That is, Case 1 is to finish drawing a cup of 50m in diameter in one stage, Case 2 and Case 3 are redrawing the drawn cups of 55, 65 mm in diameter to the final size respectively. Though experiments the maximum drawing force in two-stage cup drawing could be reduced up to 35% as compared with that of one-stage cup drawing. In addition, the Case 2 and Case 3 processes showed better product qualities than the Case 1 process when comparing distributions of thickness, hardness, dimensional accuracy.

  • PDF

Experimental Study on the Multi-stage Deep Drawing Process (다단계 ?드로잉 가공에 대한 실험적 연구)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.288-296
    • /
    • 1996
  • A method of determining an optimum blank shape for non-circular deep drawing process is extended to the multi-stage deep drawing process. As an example concentric two-stage square deep drawing process is considered and the ideal blank shape with uniform cup height and without flange part after the process is constructed by the backward tracing of rigid plastic FEM. The conventional square blank shapes are also adopted for the comparison of two cases. As a result it is confirmed that the drawn products with better thickness strain distribution and deeper cup depth could be obtained by the suggested ideal blank shapes.

  • PDF

Dimensional Accuracy of Cylindrical Cups in Multi-Stage Drawing of Aluminum Sheet Metal (알루미늄 판재의 다단계 드로잉에 있어서 원통컵의 치수 정밀도 비교)

  • Choi, J.M.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • Deep drawing of cylindrical cups is one of the most fundamental and important processes in sheet metal forming. Circular cups are widely used in industrial fields such as automobile and electronic appliances. Some of these cups are formed by a one-stage process, others such as battery cases and beverage cans are made by a multi-stage process. In the current study the multi-stage deep drawing of aluminum sheet metal is examined. The process consists of two deep drawing operations followed by two ironing operations. The press die, which can be used for the four-stage forming process, was manufactured allowing punch and die components to be easily changed for various experiments. The rolling direction of both the sheet and the drawn cups was always positioned toward the horizontal x-direction on the die face to minimize experimental errors during the progressive forming. The dimensional accuracy of the cylindrical cups formed at each stage and the earing defect due to the anisotropy of sheet were investigated. The influence of anisotropy on the thickness distribution was also examined. Both the thickness and the outer diameter of the cups were measured and compared for each set of experimental conditions. It was found that the dimensional accuracy of cups rapidly improves by employing the ironing process and also by increasing the amount of ironing.