• Title/Summary/Keyword: Two-Phase Mixing

Search Result 186, Processing Time 0.025 seconds

A Study on Three Factors Influencing Uptake Rates of Nitric Acid onto Dust Particles

  • Song, Chul-Han;Kim, Chung-Man
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • Recent studies have indicated that the observed nitric acid ($HNO_3$) uptake rates ($R_{HNO_3}$) onto dust particles are much slower than $R_{HNO_3}$ used in the previous modeling studies. Three factors that possibly affect $R_{HNO_3}$ onto dust particles are discussed in this study: (1) the magnitude of reaction probability of $HNO_3$ (${\gamma}_{HNO_3}$), (2) aerosol surface areas, and (3) gas-phase $HNO_3$ mixing ratio. Through the discussion presented here, it is shown that the use of accurate ${\gamma}_{HNO_3}$ is of primary importance. We suggest that the use of ${\gamma}_{HNO_3}$ values between $\sim10^{-3}$ and $\sim10^{-5}$ produces more realistic results than the use of ${\gamma}_{HNO_3}$ values between $\sim10^{-1}$ and $\sim10^{-2}$ does, more accurately modeling the nitrate formation characteristics on/in dust particles. We also discuss two different types of aerosol surface area, active and geometric, since the use of different aerosol surface areas often leads to an erroneous result in $R_{HNO_3}$. In addition, the levels of the gas-phase $HNO_3$ are investigated with the example cases of TRACE-P DC-8 flights in East Asia. The $HNO_3$ levels were found to be relatively high, indicating that they can not limit nitrate formation in dust particles.

Improved Synthesis Method of Negative Inter-channel Correlation Parameter Based on Anti-phase Primary Component (반위상 주요성분에 기반을 둔 개선된 음수 채널간 상관도 파라미터 합성 기법)

  • Hyun, Dong-Il;Lee, Seok-Pil;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.410-418
    • /
    • 2012
  • Parametric stereo(PS) and MPEG surround(MPS) are major spatial audio coding(SAC) tools. In this paper, the problem of the inter-channel correlation(ICC) synthesis in the conventional SAC is analyzed. Conventional methods assume that ambient components mixed to two output channels are anti-phased, while the primary components are assumed to be in-phased. This assumption can cause excessive ambient mixing for a negative-valued ICC. As a remedy to this problem, we propose a new ICC synthesis method based on an assumption that the primary components are anti-phased each other for a negative ICC. The proposed method is also applied to the approximation which works in practice. The performance of the proposed method was evaluated by computer simulations and the subjective listening tests verified that the proposed method is effective in not only headphones but also loudspeakers playback.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

A Study for the Advanced Design of Rotary Kiln Incinerator III : 3-Dimensional CC1$_4$/CH$_4$Gas-phase Turbulent Reaction Model (로타리 킬른 소각로 고도 설계를 위한 연구 III : 3차원 CC1$_4$/CH$_4$기상난류 반응 모델)

  • 엄태인;장동순;채재우
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-67
    • /
    • 1993
  • Two turbulent reaction models of the premixed CC1$_4$/CH$_4$/air mixture are successfully incorporated in a 3-dimensional computer program and is applied for Dow Chemical incinerator equipped with two main off-center burners. The first reaction model is fast chemistry model(model 1), in which chemical reaction is governed by the turbulent mixing itself. And the second one is nonequilibrium model(model 2), where the effect of the chemical kinetics due to the presence of CC1$_4$is considered by the incorporation of the burning velocity data of CC1$_4$. The second model not only shows the flame inhibition trend due to the presence CC1$_4$compound, but also predicts qualitatively the vortical stratification of the CC1$_4$concentration appeared experimentally at the kiln exit. Other comparisions of two models are made in detail.

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

CHAINED COMPUTATIONS USING AN UNSTEADY 3D APPROACH FOR THE DETERMINATION OF THERMAL FATIGUE IN A T-JUNCTION OF A PWR NUCLEAR PLANT

  • Pasutto, Thomas;PENiguel, Christophe;Sakiz, Marc
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modelling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code_Saturne, developped at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code_Aster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall.

Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application

  • Bhatia, Amita;Gupta, Rahul K.;Bhattacharya, Sati. N.;Choi, H.J.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • Biodegradable polymeric blends are expected to be widely used by industry due to their environmental friendliness and comparable mechanical and thermal properties. Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) are such biodegradable polymers which aim to replace commodity polymers in future applications. Since cost and brittleness of PLA is quite high, it is not economically feasible to use it alone for day to day use as a packaging material without blending. In this study, blends of PLA and PBS with various compositions were prepared by using a laboratory-scale twin-screw extruder at $180^{\circ}C$. Morphological, thermal, rheological and mechanical properties were investigated on the samples obtained by compression molding to explore suitability of these compositions for packaging applications. Morphology of the blends was investigated by scanning electron microscopy (SEM). Morphology showed a clear phase difference trend depending on blend composition. Modulated differential scanning calorimetry (MDSC) thermograms of the blends indicated that the glass transition temperature ($T_g$) of PLA did not change much with the addition of PBS, but analysis showed that for PLA/PBS blend of up to 80/20 composition there is partial miscibility between the two polymers. The tensile strength and modulus were measured by the Instron Universal Testing Machine. Tensile strength, modulus and percentage (%) elongation at break of the blends decreased with PBS content. However, tensile strength and modulus values of PLA/PBS blend for up to 80/20 composition nearly follow the mixing rule. Rheological results also show miscibility between the two polymers for PBS composition less than 20% by weight. PBS reduced the brittleness of PLA, thus making it a contender to replace plastics for packaging applications. This work found a partial miscibility between PBS and PLA by investigating thermal, mechanical and morphological properties.

Examination for Efficiency of Groundwater Artificial Recharge in Alluvial Aquifer Near Nakdong River of Changweon Area, Korea (창원지역 낙동강 하천수와 주변 충적층을 이용한 지하수 인공함양의 효율성 평가)

  • Moon, Sang-Ho;Ha, Kyoochul;Kim, Yongcheol;Koh, Dong-Chan;Yoon, Heesung
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.611-623
    • /
    • 2014
  • The alluvial aquifer, widely developed near the four major rivers such as Nakdong River, can be used effectively for groundwater artificial recharge and is expected to be the future water resources in Korea. This study is aimed at examining the impact of repeatedly injected river water into the riverside alluvial aquifer on injection rate or efficiency in its system at Changweon area. For this, injection tests were performed two times, first on June 19 and second on September 25 through October 9, 2013, and the mixing ratios of river water to groundwater were used as the tool to compare the efficiency of injection. The mixing ratios were evaluated by using electrical conductivities of injected river water (average $EC=303{\mu}S/cm$) and groundwater ($EC{\fallingdotseq}6,000{\mu}S/cm$) measured at 20 m depth of four observation wells installed 10 m apart from each injection well. The result shows the remarkable differences on two respects. First, in some observation well, detection time for incipient injection effect during $2^{nd}$ injection test was shown to be much slower than that of $1^{st}$ injection test. Second, the hourly increasing rate of mixing ratios in $2^{nd}$ test was revealed to be reduced much more than that of $1^{st}$ test. This means that the efficiency of injection was badly deteriorated by only 1,210 minute injection work. Therefore, injection water needs to be adequately treated beforehand and repeated pumping work and/or resting phase is needed afterwards. To a certain extent, the improvement of water quality in saline aquifer was verified in this system by injection tests.

Metabolic Responses of Activated Sludge to Pentachlorophenol in SBR Systems

  • ;Larry D. Benefield
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.273-284
    • /
    • 1994
  • The primary objective of this study was to examine the toxic effects of PCP on activated sludge and to analyze its metabolic responses while treating wastewater containing pentachlorophenol (PCP) in a sequencing batch reactor (SBR) system operating under different control strategies. This study was conducted in two phases 1 and 2 (8-hr and 12-hr cycles). Each phase was operated with two control strategies I and II. Strategy I (reactor 1) involved rapid addition (5 minutes to complete) of substrate to the reactor with continuous mixing but no aeration for 2 hours. Strategy ll (reactor 2) involved adding the feed continuously during the first 2 hours of the cycle when the system was mixed but not aerated. During both phases each reactor was operated at a sludge age of 15 days. The synthetic wastewater was used as a feed. The COD of the feed solution was about 380 mg/l. After the reference response for both reactors was established, the steady state response of each system was established for PCP feed concentrations of 0.1 mg/l, 1.0 mg/l, and 5.0 mg/l in SBR systems operating on both 8-hr and 12-hr cycles. Soluble COD removal was not inhibited at any feed PCP concentrations used. At 5.0 mg/l fined PCP concentration and in SBR systems operating on phase 2, the concentrations of MLVSS were decreased; selective pressure on the mixed biomass might be increased, narrowing the range of possible ecological responses; the settleability of activated sludge was poor; the SOURS were increased, showing that the systems were shocked. Nitrification was made to some extent at all concentrations of feed PCP in SBR systems operating on phase 2 whereas in SBR systems operating on phase 1 little nitrification was observed. Then, nitrification will be delayed as much as soluble COD removal is retarded due to PCP inhibition effects. Enhanced biological phosphorus removal occurring in the system operating with control strategy I during phase 1 of this work and in the presence of low concentrations of PCP was unreliable and might cease at anytime, whereas enhanced biological phosphorus removal occurring in the system operating with either control strategy I or II during phase 2 of this work and in the Presence of feed PCP concentrations up to 1.0 mg/l was reliable. When, however, such processes were exposed to 5.0 mg/l PCP dose, enhanced phosphorus removal ceased and never returned.

  • PDF

Metabolic Responses of Activated Sludge to Pentachlorophenol in a SBR System (SBR 처리 장치에서 활성 슬럿지의 대사에 미치는 Pentachlorophenol의 독성 효과)

  • KIM Sung-Jae;Benefield Larry D.
    • Journal of Aquaculture
    • /
    • v.6 no.4
    • /
    • pp.323-338
    • /
    • 1993
  • The primary objective of this study was to examine the toxic effects of PCP on activated sludge and to analyze its metabolic responses while treating wastewater containing pentachlorophenol (PCP) in a sequencing batch reactor (SBR) system operating under different control strategies. This study was conducted in two phases 1 and 2 (8-hr and 12-hr cycles). Each phase was operated with two control strategies I and II. Strategy I (reactor 1) involved rapid addition (5 minutes to complete) of substrate to the reactor with continuous mixing but no aeration for 2 hours. Strategy II (reactor 2) involved adding the feed continuously during the first 2 hours of the cycle when the system was mixed but not aerated. During both phases each reactor was operated at a sludge age of 15 days. The synthetic wastewater was used as a feed. The COD of the feed solution was about 380 mg/L. After the reference response for both reactors was established, the steady state response of each system was established for PCP feed concentrations of 0.1 mg/L, 1.0 mg/L, and 5.0 mg/L in SBR systems operating on both 8-hr and 12-hr cycles. Soluble COD removal was not inhibited at any feed PCP concentrations used. At 5.0 mg/L feed PCP concentration and in SBR systems operating on phase 2, the concentrations or ML VSS were decreased; selective pressure on the mixed biomass might be increased, narrowing the range of possible ecological responses; the settleability of activated sludge was poor; the SOURs were increased, showing that the systems were shocked. Nitrification was made to some extent at all concentrations of feed PCP in SBR systems operating on phase 2 whereas in SBR systems operating on phase 1 little nitrification was observed. Then, nitrification will be delayed as much as soluble COD removal is retarded due to PCP inhibition effects. Enhanced biological phosphorus removal occurring in the system operating with control strategy I during phase 1 of this work and in the presence of low concentrations of PCP was unreliable and might cease at anytime, whereas enhanced biological phosphorus removal occurring in the system operating with either control strategy I or II during phase 2 of this work and in the presence of feed PCP concentrations up to 1.0 mg/L was reliable. When, however, such processes were exposed to 5.0 mg/L PCP dose, enhanced phosphorus removal ceased and never returned.

  • PDF